Use of Structure-Activity Relationships in the Study of Adenosine Receptors

  • R. A. Olsson
  • R. D. Thompson
  • S. Kusachi


The study of structure-activity correlations uses information about the chemical attributes and biological activities of ligands to draw indirect inferences about the structure of a receptor and the physical forces that govern the receptor-ligand interaction. Knowledge of this kind can guide the design of artifical ligands, drugs that preserve the essential features of a natural ligand for receptor recognition and activation (or inhibition) at some advantage over the natural ligand, such as lower cost, greater selectivity, or better stability.


Dipole Moment Adenylate Cyclase Adenosine Receptor Purine Nucleoside Adenosine Analog 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afonso, S. 1970. Inhibition of coronary vasodilating action of dipyridamole and adenosine by aminophylline in the dog. Circ. Res., 26: 743–752.PubMedCrossRefGoogle Scholar
  2. Angus, J. A., Cobbin, L. B., Einstein, R., and Maguire, M. H. 1971. Cardiovascular actions of substitutes adenosine analogues. Br. J. Pharmacol., 41: 592–599.PubMedCrossRefGoogle Scholar
  3. Bergmann, E. D., and Weiler-Feilchenfeld, H. 1972. The dipole moments of purines. In: The Purines: Theory and Experiment, pp. 21–28. Ed. by Bergmann, E. D. and Pullman, B., Israel Acad. Sci. Human., Jerusalem.Google Scholar
  4. Bruns, R. F. 1981. Adenosine antagonism by purines, pteridines and beanzopteridines in human fibroblasts. Biochem. Pharmacol., 30: 325–333.PubMedCrossRefGoogle Scholar
  5. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1980. Adenosine receptors in brain membranes: Binding of N6-cyclohexyl [3H]adenosine and l,3-diethyl-8-[3H]phenyl-xanthine. Proc. Natl. Acad. Sci. U.S.A., 77: 5547–5551.Google Scholar
  6. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1983. Adenosine receptor binding: Structure-activity analysis generates extremely potent xanthine antagonists. Proc. Natl. Acad. Sci. U.S.A., 80: 2077–2080.PubMedCrossRefGoogle Scholar
  7. Bunger, R., Haddy, F. J., and Gerlach, E. 1975. Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch., 358: 213–224.PubMedCrossRefGoogle Scholar
  8. Cobbin, L. B., Einstein, R., and Maguire, M. H., 1974. Studies on the coronary dilator actions of some adenosine analogues. Br. J. Pharmacol. 50: 25–33.PubMedCrossRefGoogle Scholar
  9. Daly, J. W. 1982. Adenosine receptors: Targets for future drugs. J. Med. Chem., 25: 197–207.PubMedCrossRefGoogle Scholar
  10. Dietmann, K., Birkenheier, H., and Schaumann, W. 1970. Hemmung der induzierten Thrombocyten- Aggregation durch Adenosin und Adenosine-Derivate. Arzneim-Forsch., 20: 1749–1751.Google Scholar
  11. Gough, G., and Maguire, M. H. 1965. 2-trifluoromethyladenosine. J. Med. Chem., 5: 866–867.Google Scholar
  12. Israelachvili, J. N. 1974. Van der Waals forces in biological systems. Quart. Rev. Biophys., 6: 341–387.CrossRefGoogle Scholar
  13. Jahn, W. 1965. Kreislaufwirkungen 5’-substituierter Adensin Derivate. Naunyn Schmiedehergs Arch. Pharmacol., 257: 95–104.Google Scholar
  14. Jahn, W. 1969. N6-[Naphthyl-(l)]-methyl-adenosin, ein Adenosin-Derivat mit langer anhaltender Co- ronarwirkung. Arzneium-Forsch., 19: 701–704.Google Scholar
  15. Jones, J. W., and Robins, R. K. 1963. Purine nucleosides: III. Methylation studies of certain naturally occurring purine nucleosides. J. Am. Chem. Soc., 55: 193–201.CrossRefGoogle Scholar
  16. Kawazoe, K., Matsumoto, N., Tanabe, M., Fujiwara, S., Yanagimoto, M., Hirata, M., and Kikuchi, K. 1980. Coronary and cardiohemodynamic effects of 2-phenyl-aminoadenosine (CV-1808), Arz- neim-Forsch., 50: 1083–1087.Google Scholar
  17. Kikugawa, K., Iizuka, K., Higuchi, Y., Hirayama, H., and Ichino, M. 1972. Platelet aggregation inhibitors. 2. Inhibition of platelet aggregation by 5’-, 2-, 6-, and 8-substituted adenosines. J. Med. Chem., 75: 387–390.Google Scholar
  18. Kikugawa, K., Iizuka, K., and Ichino, M. 1973. Platelet aggregation inhibitors. 4. N6-substituted adenosines. J. Med. Chem., 76: 358–364.CrossRefGoogle Scholar
  19. Kukovetz, W. R., Wurm, A., Holzmann, S., Poch, G., and Rinner, I. 1979. Evidence for an adenylate cyclase-linked adenosine receptor mediating coronary relaxation. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 205–213. Ed. by Baer, H. P., and Drummond, G. I., Raven Press, New York.Google Scholar
  20. Kusachi, S., Thompson, R. D., and Olsson, R. A. 1983. Ligand selectivity of dog coronary adenosine receptor resembles that of adenylate cyclase stimulatory ( Ra) receptors, J. Pharmacol. Exp. Ther. 277: 316–321.Google Scholar
  21. Londos, C., Cooper, D. M. F., and Wolff, J. 1980. Subclasses of external adenosine receptors. Proc. Natl. Acad. Sci. U.S.A., 77: 2551–2554.Google Scholar
  22. Marumoto, R., Yoshioka, Y., Miyashita, O., Shima, S., Imai, K.-I., Kawazoe, K., and Honjo, M. 1975. Synthesis and coronary vasoactivity of 2-substituted adenosines. Chem. Pharm. Bull., 23: 159–174.Google Scholar
  23. Mills, D. C. B., MacFarlane, D. E., Lemmex, B. W. G., and Haslam, R. J., 1983. In: Regulatory Functions of Adenosine, pp. 277–289. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  24. Mistry, G., and Drummond, G. I. 1983. Effects of adenosine, its analogs, adrenergic agents and prostaglandins on adenylate cyclase of heart microvessels. In: Regulatory Function of Adenosine, pp. 529–530. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.Google Scholar
  25. Nair, V., and Richardson, S. G. 1982. Modification of nucleic acid bases via radical intermediates: Synthesis of dihalogenated purine nucleosides. Synthesis, 670–672.Google Scholar
  26. Olsson, R. A. 1983. Adenosine receptors on vascular smooth muscle. In: Regulatory Function of Adenosine, pp. 33–47. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  27. Olsson, R. A., Khouri, E. M., Bedynek, J. L., Jr., and McLean, J. 1979. Coronary vasoactivity of adenosine in the conscious dog. Circ. Res., 45: 468–478.Google Scholar
  28. Osman, R., Weinstein, H., and Green, J. P. 1979. Parameters and methods in quantitative structure- activity relationships. In: ACS Symposium 112, Computer-Assisted Drug Design, pp. 21–77. Ed. by Olson, E. C., and Christoffersen, R. E. American Chemical Society, Washington, D. C.CrossRefGoogle Scholar
  29. Prasad, R. N., Fung, A., Tietje, K., Stein, H. H., and Brondyk, H. D. 1976. Modification of the 5’ position of purine nucleosides. 1. Synthesis and biological properties of alkyl adenosine-5’-carboxylates. J. Med. Chem., 79: 1180–1186.Google Scholar
  30. Prasad, R. N., Bariana, D. S., Fung, A., Savic, M., Tietje, K., Stein, H. H., Brondyk, H., and Egan, R. 1980. Modification of the 5’ position of purine nucleosides. 2. Synthesis and some cardiovascular properties of adenosine-5’-(N-substituted) carboxamides. J. Med. Chem., 25: 313–319.CrossRefGoogle Scholar
  31. Pullman, A. 1969. The electronic structure of purines and pyrimidines. Ann. N.Y. Acad. Sci., 158: 65–85.Google Scholar
  32. Raberger, G., Schiitz, W., and Kraup, O. 1977. Coronary dilatory action of adenosine analogs: A comparative study. Arch. Int. Pharmacodyn. Ther., 230: 140–149.PubMedGoogle Scholar
  33. Robins, M. J. and Uznariski, B. 1981. Nucleic acid related compounds. 34. Nonaqueous diazotization with tertbutyl nitrite. Introduction of fluorine, chlorine and bromine at C-2 of purine nucleosides. Can. J. Chem., 59: 2608–2611.CrossRefGoogle Scholar
  34. Sattin, A., and Rail, T. W. 1970. The effects of adenosine and adenine nucleotides on the cyclic 3’, 5’- monophosphate content of guinea pig cerebral cortical slices. Mol. Pharmacol., 6: 13–23.PubMedGoogle Scholar
  35. Scholtholt, J., Nitze, R. E., and Schraven, E. 1972. On the mechanism of the antagonistic action of xanthine derivatives against adenosine and coronary vasodilators. Arzneim-Forsch., 22: 1255–1259.Google Scholar
  36. Shimizu, G., Kaneko, M., Saito, A., Nishino, H., Mizuno, H., Oshima, I., Nakayama, K., and Koike, H. 1971. An alternate synthesis of N6 substituted adenosines and their coronary dilator activities. Ann. Sankyo Res. Lab., 25: 117–123.Google Scholar
  37. Van Calker, D., Muller, M., and Hamprecht, B. 1979. Adenosine regulates via two different types of receptors: The accumulation of cyclic AMP in cultured brain cells. J. Neurochem., 33. 999–1005.PubMedCrossRefGoogle Scholar
  38. Vapaatalo, H., Onken, D., Neuvonen, P. J., and Westermann, E. 1975. Stereospecificity of some central and circulatory effects of phenylisopropyl-adenosine ( PIA ), Arzneim-Forsch., 25: 407–410.Google Scholar
  39. Weinstein, H., Osman, R., and Green, J. P. 1979. The molecular basis of structure-activity relationships: Quantum chemical recognition mechanisms in drug-receptor interactions. In: ACS Symposium 112, Computer-Assisted Drug Design, pp. 161–187. Ed. by Olson, E. C., and Christoffersen, R. E. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  40. Wolff, J., Londos, C., and Cooper, D. M. F. 1981. Adenosine receptors and the regulation of adenylate cyclase. Adv. Cyclic Nucleotide Res. 74: 199–214.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • R. A. Olsson
    • 1
  • R. D. Thompson
    • 2
    • 3
  • S. Kusachi
    • 2
    • 3
  1. 1.Department of BiochemistryUniversity of South Flordia College of MedicineTampaUSA
  2. 2.Suncoast AHA Chapter Cardiovascular Research LaboratoryUniversity of South Flordia College of MedicineTampaUSA
  3. 3.Department of Internal MedicineUniversity of South Flordia College of MedicineTampaUSA

Personalised recommendations