Advertisement

Use of Photoaffinity Labels as P2-Purinoceptor Antagonists

  • Jeffrey S. Fedan
  • G. Kurt Hogaboom
  • John P. O’Donnell
  • David P. Westfall

Abstract

In recent years there has been considerable interest in the possible role of adenine nucleotides, such as ATP, as neuromodulators (Su, 1977; De Mey et al., 1979; Katsuragi and Su, 1982), neurotransmitters (Burnstock et al., 1970; Burnstock, 1979), or cotransmitters (Westfall et al., 1978; Fedan et al, 1981; Sneddon et al., 1982a). The chief impediment to accepting the notion that adenine nucleotides act as neuromodulators or neurotransmitters has been the unavailability of a specific pharmacological antagonist of responses to ATP (see, for example, Campbell and Gibbons, 1979). Although a number of compounds have been investigated in this regard, including 2-2′-pyridylisatogen, 2-2′-methoxyphenylisatogen, quinidine, apamin, and 2-substituted imidazolines, the antagonism afforded by these drugs in several autonomic nerve-smooth muscle preparations is nonspecific; i.e., in concentrations sufficient to antagonize responses to ATP, the responses to other agonists are also reduced (Weetman and Turner, 1977; Burnstock, 1979, 1983).

Keywords

Adenine Nucleotide Photoaffinity Label Smooth Muscle Preparation Organ Chamber Filter Flask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambache, N., and Zar, M. S. 1970. Non-cholinergic transmission by post-ganglionic motor neurones in the mammalian bladder. J. Physiol. ( London ), 270: 761–783.Google Scholar
  2. Baer, H. P., and Frew, R. 1979. Relaxation of guinea-pig fundic strip by adenosine, adenosine triphosphate and electrical stimulation: Lack of antagonism by theophylline or ATP treatment. Br. J. Pharmacol., 67: 293–299.PubMedCrossRefGoogle Scholar
  3. Bayley, H., and Knowles, J. R. 1977. Photoaffinity labeling. Methods Enzymol. 46: 69–114.PubMedCrossRefGoogle Scholar
  4. Burnstock, G. 1979. Past and current evidence for the purinergic nerve hypothesis. In: Physiological and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 3–32. Ed. by Baer, H. P. and Drummond, G. I. Raven Press, New York.Google Scholar
  5. Burnstock, G. 1983. A comparison of receptors for adenosine and adenine nucleotides. In Regulatory Function of Adenosine, pp. 49–59. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  6. Burnstock, G., and Wong, H. 1978. Comparison of the effects of ultraviolet light and purinergic nerve stimulation on the guinea-pig taenia coli. Br. J. Pharmacol62: 293–302.Google Scholar
  7. Burnstock, G., Campbell, G., Satchell, D., and Smythe, A. 1970. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. Br. J. Pharmacol., 40: 668–688.Google Scholar
  8. Campbell, G., and Gibbons, I. L. 1979. Non-adrenergic, non-cholinergic transmission in the autonomic nervous system: purinergic nerves. In: Trends in Automatic Pharmacology, Volume 1, pp. 103–144. Ed. by Kalsner, S. Urban and Schwarzenberg, Baltimore.Google Scholar
  9. Chowdry, V., and Westheimer, F. H. 1979. Photoaffinity labeling of biological systems. Ann. Rev. Biochem., 48: 293–325.Google Scholar
  10. Cooperman, B. S. 1976. Photoaffinity labeling of proteins and more complex receptors. In: Ageing, Carcinogenicity and Radiation Biology, pp. 315–339. Ed. by Kendric, C. Plenum, New York.CrossRefGoogle Scholar
  11. Dean, D. M., and Downie, J. W. 1978. Contribution of adrenergic and ‘purinergic’ neurotransmission to contraction in rabbit detrusor. J. Pharmacol. Exp. Ther., 207: 431–445.Google Scholar
  12. De Mey, J., Burnstock, G., and Vanhoutte, P. M. 1979. Modulation of the evoked release of nora-drenaline in canine saphenous vein via presynaptic receptors for adenosine but not ATP. Europ. J. Pharmacol., 55: 401–405.CrossRefGoogle Scholar
  13. Fedan, J. S., Hogaboom, G. K., O’Donnell, J. P., Colby, J., and Westfall, D. P. 1981. Contribution by purines to the neurogenic response of the vas deferens of the guinea pig, Europ. J. Pharmacol., 69: 41–53.Google Scholar
  14. Fedan, J. S., Hogaboom, G. K., Westfall, D. P., and O’Donnell, J. P. 1982. Comparison of contractions of the smooth muscle of the guinea-pig vas deferens induced by ATP and related nucleotides. Eur. J. Pharmacol87: 193–204.Google Scholar
  15. Fedan, J. S., Hogaboom, G. K., Westfall, D. P., and O’Donnell, J. P. 1983a. Photoafinity labeling of P2-purinergic and Hi-histamine receptors in intact smooth muscle. Fed. Proc., 42: 2846–2850.Google Scholar
  16. Fedan, J.S., Hogaboom, G. K., and O’Donnell, J. P. 1983b. Photoaffinity labels as pharmacological tools. Biochem. Pharmacol., in press.Google Scholar
  17. Frew, R., and Lundy, P. M. 1982a. Effect of arylazido aminopropionyl ATP (ANAPP3), a putative ATP antagonist, on ATP responses of isolated guinea pig smooth muscle. Life Sci., 30: 259–267.PubMedCrossRefGoogle Scholar
  18. Frew, R., and Lundy, P. M. 1982b. Evidence against ATP being the nonadrenergic, noncholinergic inhibitory transmitter in guinea pig stomach, Europ. J. Pharmacol., 81: 333–336.CrossRefGoogle Scholar
  19. Galardy, R. E., and LaVorgna, K. A. 1981. Photochemical inactivation of the angiotensin receptor of rabbit aorta by N (2-nitro-5-azidobenzoyl)-[l-aspartic, 5-isoleucine] angiotensin II. J. Med. Chem., 24: 362–366.Google Scholar
  20. Guillory, R. J., and Jeng, S. J. 1983. Photoaffinity labeling: Theory and practice. Fed. Proc., 42: 2826–2830.PubMedGoogle Scholar
  21. Haley, B. E. 1975. Photoaffinity labeling of cAMP binding sites of human red blood cell membranes. Biochemistry, 74: 3852–3857.CrossRefGoogle Scholar
  22. Hogaboom, G. K., O’Donnell, J. P., and Fedan, J. S. 1980. Purinergic receptors; Photoaffinity analog of adenosine triphosphate is a specific adenosine triphosphate antagonist. Science, 208: 1213–1216.Google Scholar
  23. Jeng, S. J., and Guillory, R. J. 1975. The use of arylazido ATP analogs as photoaffinity labels for myosin ATPase. J. Supramolec. Struct., 5: 448–468.Google Scholar
  24. Katsuragi, R., and Su, C. 1982. Augmentation by theophylline of [3H]purine release from vascular adrenergic nerves: Evidence for presynaptic autoinhibition. J. Pharmacol. Exp. Ther., 220: 152–156.Google Scholar
  25. Meldrum, L. A., and Burnstock, G., 1983. Evidence that ATP acts as a co-transmitter with nora-drenaline in sympathetic nerves supplying the guinea-pig vas deferens. Europ. J. Pharmacol., 92: 161–163.CrossRefGoogle Scholar
  26. O’Donnell, J. P., Hogaboom, G. K., and Fedan, J. S. 1983. Comparison of photoaffinity labeling of P2-purinergic receptors of isolated guinea-pig vas deferens by arylazido aminopropionyl ATP and by arylazido aminobutyryl ATP. Europ. J. Pharmacol., 86: 435–440.Google Scholar
  27. Owens, J. R., and Haley, B. E. 1978. Use of photoaffinity nucleotide analogs to determine the mechanism of ATP regulation of a membrane bound, cAMP activated protein kinase. J. Supramolec. Struct., 9: 57–68.Google Scholar
  28. Pomerantz, A. H., Rudolf, S. A., Haley, B. E., and Greengard, P. 1975. Photoaffinity labeling of a protein kinase from bovine brain with 8-azido adenosine 3’, 5’-monophosphate. Biochemistry 14: 3858–3862.PubMedCrossRefGoogle Scholar
  29. Sneddon, P., Westfall, D. P., and Fedan, J. S. 1982a. Cotransmitters in motor nerves of the guinea pig vas deferens: Electrophysiological evidence. Science, 218: 693–695.PubMedCrossRefGoogle Scholar
  30. Sneddon, P., Westfall, D. P., and Fedan, J. S. 1982b. Investigation of relaxations of the rabbit ano-coccygeus muscle by nerve stimulation and ATP using the ATP antagonist ANAPP3. Europ. J. Pharmacol., 80: 93–98.CrossRefGoogle Scholar
  31. Somylo, A. P., and Somylo, A. V. 1970. Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels, Pharm. Rev. 22: 249–353.Google Scholar
  32. Su, C. 1977. Purinergic inhibition of adenergic transmission in rabbit blood vessels. J. Pharmacol. Exp. Ther., 204: 351–361.Google Scholar
  33. Theobald, R. J., Jr., 1982. Arylazido aminopropionyl ATP (ANAPP3) antagonism of cat urinary bladder contractions. J. Autonom. Pharmacol., 3: 175–179.Google Scholar
  34. Theobald, R. J., Jr., 1983. The effect of arylazido aminopropionyl ATP on atropine resistant con-tractions of the cat urinary bladder. Life Sci., 32: 2479–2484.PubMedCrossRefGoogle Scholar
  35. Weetman, D. F., and Turner, N. 1977. The effects of ATP-receptor blocking agents on the response of the guinea-pig isolated bladder preparation to hyoscine-resistant nerve stimulation. Arch. Int. Pharmacodyn, 228: 10–14.PubMedGoogle Scholar
  36. Westfall, D. P., Stitzel, R. E., and Rowe, J. N. 1978. The postjunctional effects and neuronal release of purine compounds in the guinea pig vas deferns, Europ. J. Pharmacol., 50: 21–38.CrossRefGoogle Scholar
  37. Westfall, D. P., Hogaboom, G. K., Colby, J., O’Donnell, J. P., and Fedan, J. S. 1982. Direct evidence against a role of ATP as the nonadrenergic, noncholinergic inhibitory neurotransmitter in guinea pig tenia coli. Proc. Natl. Acad. Sci. USA, 49: 7041–7045.CrossRefGoogle Scholar
  38. Westfall, D. P., Fedan, J. S., Colby, J., Hogaboom, G. K., and O’Donnell, J. P. 1983. Evidence for a contribution by purines to the neurogenic response of the guinea-pig urinary bladder. Europ. J. Pharmacol., 87: 415–422.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Jeffrey S. Fedan
    • 1
  • G. Kurt Hogaboom
    • 2
  • John P. O’Donnell
    • 3
  • David P. Westfall
    • 4
  1. 1.Physiology SectionNational Institute for Occupational Safety and HealthUSA
  2. 2.Department of Pharmacology and ToxicologyWest Virginia University Medical CenterMorgantownUSA
  3. 3.School of PharmacyWest Virginia University Medical CenterMorgantownUSA
  4. 4.Department of PharmacologyUniversity of Nevada School of MedicineRenoUSA

Personalised recommendations