Use of Radioligands in the Identification, Classification, and Study of Adenosine Receptors

  • Ulrich Schwabe


Pharmacologically important adenosine receptors can be divided into two subtypes, namely, Ri (A1) and Ra (A2). The distinction between these two subtypes was first achieved in adenylate cyclase studies of several different cellular systems (Van Calker et al., 1979; Londos et al., 1980). The Ra adenosine receptor has a high affinity for adenosine and mediates inhibition of adenylate cyclase activity. The Ra adenosine receptor has a lower affinity and mediates stimulation of enzyme activity. In addition to these external receptors, nearly all cyclase preparations contain a third adenosine-sensitive site that is located at the internal side of the cell membrane and mediates inhibition of enzyme activity (Londos and Wolff, 1977).


Adenylate Cyclase Adenosine Receptor Adenosine Deaminase Adenosine Analog Competition Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, R. W., and Krishnan, N. 1979. Application of the miniature ultracentrifuge in receptor-binding assays. Anal. Biochem., 96: 395–402.PubMedCrossRefGoogle Scholar
  2. Bennett, J. P. 1978. Methods in binding studies. In: Neurotransmitter Receptor Binding, pp. 57–90. Ed. by Yamamura, H. I., Enna, S. J., and Kuhar, M. J. Raven Press, New York. Bruns, R. F. 1981.Google Scholar
  3. Adenosine antagonism by purines, pteridines and benzopteridines in human fibroblasts. Biochem. Pharmacol., 30: 325–333.Google Scholar
  4. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1980. Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosine and l,3-diethyl-8-[3H]phenylxanthine. Proc. Natl Acad. Sci. USA, 77: 5547–5551.Google Scholar
  5. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1983. Adenosine receptor binding: Structure-activity analysis generates extremely potent xanthine antagonists. Proc. Natl Acad. Sci. USA, 80: 2011–2080.CrossRefGoogle Scholar
  6. Buckley, N., and Burnstock, G. 1983. Autoradiographic demonstration of peripheral adenosine binding sites using [3H]-NECA. Brain Res., 269: 374–377.PubMedCrossRefGoogle Scholar
  7. Cheng, Y., and Prusoff, W. H. 1973. Relationship between the inhibition constant (K/) and the concentration of inhibitor which causes 50% inhibition (I5o) of an enzymatic reaction. Biochem. Pharmacol., 22: 3099–3108.Google Scholar
  8. Cuatrecasas, P. 1971. Insulin-receptor interactions in adipose tissue cells: Direct measurement and properties. Proc. Natl Acad. Sci. USA, 68:1264–1268.Google Scholar
  9. Daly, J. W., Nimitkitpaisan, Y., Pons, F., Bruns, R. F., Smellie, F., and Skolnick, P. 1979. Binding sites for adenosine analogs: Possible relationship to cyclic AMP-generating systems in brain tissue. Pharmacologist, 21: 253.Google Scholar
  10. De Lean, A., Hancock, A. A., and Lefkowitz, R. J. 1982. Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol. Pharmacol., 27: 5-16.Google Scholar
  11. Dietmann, K., Birkenheier, H., and Schaumann, W. 1970. Hemmung der induzierten Thrombozyten- Aggregation durch Adenosin und Adenosin-Derivative. II: Korrelation zwischen Hemmung der Aggregation und peripherer Vasodilatation. Arzneimittelforsch., 20: 1749–1751.PubMedGoogle Scholar
  12. Fox, I.H., and Kurpis, L. 1983. Binding characteristics of an adenosine receptor in human placenta. J. Biol. Chem., 258: 6952–6955.PubMedGoogle Scholar
  13. Fredholm, B. B. 1980. Are methylxanthine effects due to antagonism of endogenous adenosine? Trends Pharmacol. Sci., 7: 129–132.Google Scholar
  14. Fredholm, B. B., and Persson, C. G. A. 1982. Xanthine derivatives as adenosine receptor antagonists. Europ. J. Pharmacol., 81: 673–676.CrossRefGoogle Scholar
  15. Freychet, P., Roth, J., and Neville, D. M. 1971. Insulin receptors in the liver: Specific binding of [125I]insulin to the plasma membrane and its relation to insulin bioactivity. Proc. Natl Acad. Sci. USA, 65: 1833–1837.Google Scholar
  16. Gavish, M., Goodman, R. R., and Snyder, S. H. 1982. Solubilized adenosine receptors in the brain: Regulation by guanine nucleotides. Science, 275: 1633–1635.CrossRefGoogle Scholar
  17. Goodman, R. R., and Snyder, S. H. 1982. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine. J. Neurosci., 2: 1230–1241.PubMedGoogle Scholar
  18. Goodman, R. R., and Cooper, M. J., Gavish, M., and Snyder, S. H. 1982. Guanine nucleotide and cation regulation of the binding of [3H]cyclohexyladenosine and [3H]diethylphenylxanthine to adenosine Ai receptors in brain membranes. Mol. Pharmacol., 27: 329–335.Google Scholar
  19. Hancock, A. A., DeLean, A. L., and Lefkowitz, R. J. 1979. Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding: Application of a computerized model fitting technique. Mol. Pharmacol., 76: 1–9.Google Scholar
  20. Haslam, R. J., and Cusack, N J. 1981. Blood platelet receptors for ADP and for adenosine. In: Pur-inergic receptors., pp. 223–285. Ed. by Burnstock, G. Chapman and Hall, London.Google Scholar
  21. Haslam, R. J., and Lynham, J. A. 1972. Activation and inhibition of blood platelet adenylate cyclase by adenosine or by 2-chloroadenosine. Life Sci., 77: 1143–1154.CrossRefGoogle Scholar
  22. Haslam, R. J., and Rosson, G. M. 1975. Effects of adenosine on levels of adenosine cyclic 3’,5’- monophosphate in human blood platelets in relation to adenosine incorporation and platelet ag-gregation. Mol. Pharmacol., 77: 528–544.Google Scholar
  23. Hunter, W. M., and Greenwood, H. 1962. Preparation of,3,iodine labelled human growth hormone of high specific activity. Nature, 194: 495–496.PubMedCrossRefGoogle Scholar
  24. Hüttemann, E., Ukena, D., Lenschow, V., and Schwabe, U. 1984. Ra Adenosine receptors in human platelets: Characterization by 5’-N-ethylcarboxamido[3H]adenosine binding in relation to adenylate cyclase activity. Naunyn-Schmiedebergs Arch. Pharmacol., 325: 226–233.Google Scholar
  25. Jacobs, S., Chang, K.-J., and Cuatrecasas, P. 1975. Estimation of hormone receptor affinity by com-petitive displacement of labeled ligand: Effect of concentration of receptor and of labeled ligand. Biochem. Biophys. Res. Comm., 66: 687–692.PubMedCrossRefGoogle Scholar
  26. Kahn, C. R. 1974. Membrane receptors for polypeptide hormones. In: Methods in Membrane Biology, Vol. 3, pp. 81–128. Ed. by E.D. Korn, Plenum Press, New York.Google Scholar
  27. Kent, R. S., De Lean, A., and Lefkowitz, R. J. 1980. A quantitative analysis of beta-adrenergic receptor interactions: Resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol. Pharmacol., 77: 14–23.Google Scholar
  28. Klingenberg, M., and Pfaff, E. 1967. Means of terminating reactions, in: Methods in Enzymology, Vol. 10, pp. 680–684. Ed. by Eastabrook, R. W., and Pullman, M. E. Academic Press, New York.Google Scholar
  29. Lefkowitz, R. J., Roth, J., Pricer, W., and Pastan, I. 1970. ACTH receptors in the adrenal: Specific binding of ACTH-[125I] and its relation to adenyl cyclase. Proc. Natl Acad. Sci. USA, 65: 745–752.Google Scholar
  30. Lewis, M. E., Patel, J., Edley, S. M., and Marangos, P. J. 1981. Autoradiographic visualization of rat brain adenosine receptors using N6-cyclohexyl[3H]adenosine. Europ. J. Pharmacol., 73: 109–110.CrossRefGoogle Scholar
  31. Lohse, M. J., Lenschow, V., and Schwabe, U. 1984. Two affinity states of Ri adenosine receptors in brain membranes: Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol. Pharmacol., 26: 1–9.PubMedGoogle Scholar
  32. Londos, C., and Wolff, J. 1977. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc. Natl Acad. Sci. USA, 74: 5482–5486.Google Scholar
  33. Londos, C., Cooper, D. M. F., Schlegel, W., and Rodbell, M. 1978. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc. Natl Acad. Sci. USA, 75: 5362–5366.PubMedCrossRefGoogle Scholar
  34. Londos, C., Cooper, D. M. F., and Wolff, J. 1980. Subclasses of external adenosine receptors. Proc. Natl Acad. Sci. USA, 77: 2551–2554.PubMedCrossRefGoogle Scholar
  35. Londos, C., Wolff, J., and Cooper, D. M. F. 1981. Adenosine as a regulator of adenylate cyclase. In: Purinergic receptors, pp. 289–323. Ed. by Burnstock, G. Chapman and Hall, London.Google Scholar
  36. Mackin, W. M., Huang, C.-K., Bormann, B.-J., and Becker, E. L. 1983. A simple and rapid assay for measuring radiolabeled ligand binding to purified plasma membranes. Anal. Biochem., 131: 430–437.Google Scholar
  37. Malbon, C. C., Hert, R. C., and Fain, J. N. 1978. Characterization of [3H]adenosine binding to fat cell membranes. J. Biol. Chem., 253: 3114–3122.PubMedGoogle Scholar
  38. McKeel, D. M., and Jarett, L. 1970. Preparation and characterization of a plasma membrane fraction from isolated fat cells. J. Cell. Biol., 44: 417–432.Google Scholar
  39. Minneman, K. P., Hegstrand, L. R., and Molinoff, P. B. 1979. Simultaneous determination of beta- 1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol. Pharmacol., 16: 34–46.PubMedGoogle Scholar
  40. Munshi, R., and Baer, H. P. 1982. Radioiodination of p-hydroxyphenylisopropyladenosine: development of a new ligand for adenosine receptors. Can. J. Physiol. Pharmacol., 60: 1320–1322.CrossRefGoogle Scholar
  41. Murphy, K. M. M., and Snyder, S. H. 1981. Adenosine receptors in rat testes: Labelling with 3H- cyclohexyladenosine. Life Sci., 28: 911–920.CrossRefGoogle Scholar
  42. Murphy, K. M. M., and Snyder, S. H. 1982. Heterogeneity of adenosine Ai receptor binding in brain tissue. Mol. Pharmacol., 22: 250–257.Google Scholar
  43. Newman, M. E., Patel, J., and Mcllwain, H. 1981. The binding of [3H]adenosine to synaptosomal and other preparations from the mammalian brain. Biochem. J. 794: 611–620.Google Scholar
  44. Nimit, Y., Law, J., and Daly, J. W. 1982. Binding of 2’, 5’-dideoxyadenosine to brain membranes. Biochem. Pharmacol., 31: 3219–3287.CrossRefGoogle Scholar
  45. Patel, J., Marangos, P. J., Stivers, J., and Goodwin, F. K. 1982. Characterization of adenosine receptors in brain using N6-cyclohexyl[3H]adenosine. Brain Res., 237: 203–214.PubMedCrossRefGoogle Scholar
  46. Rodbell, M. 1980. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature, 284: 17–22.PubMedCrossRefGoogle Scholar
  47. Rodbell, J., Krans, H. M. J., Poh. S. L., and Birnbaumer, L. 1971. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. III. Binding of glucagon: method of assay and specificity. J. Biol. Chem., 246: 1861–1871.Google Scholar
  48. Rugg, E. L., Barnett, D. B., and Nahorski, S. R. 1978. Coexistence of betai and beta2 adrenoceptors in mammalian lung: Evidence from direct binding studies. Mol. Pharmacol., 14: 996–1005.PubMedGoogle Scholar
  49. Sattin, A., and Rail, T. W. 1970. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’, 5’-phosphate content of guinea pig cerebral cortex slices. Mol. Pharmacol., 6: 13–23.Google Scholar
  50. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci., 57: 660–672.CrossRefGoogle Scholar
  51. Schütz, W., and Brugger, G. 1982. Characterization of [3H]-adenosine binding to media membranes of hog carotid arteries. Pharmacology, 24: 26–34.PubMedCrossRefGoogle Scholar
  52. Schütz, W., and Tuisl, E. 1981. Evidence against adenylate cyclase-coupled adenosine receptors in the guinea pig heart. Europ. J. Pharmacol., 76: 285–288.CrossRefGoogle Scholar
  53. Schütz, W., Tuisl, E., and Kraupp, O. 1982a. Adenosine receptor agonists: Binding and adenylate cyclase stimulation in rat liver plasma membranes. Naunyn-Schmiedebergs Arch. Pharmacol., 319: 34–39.Google Scholar
  54. Schütz, W., Steurer, G., and Tuisl, E. 1982b. Functional identification of adenylate cyclase-coupled adenosine receptors in rat brain microvessels. Europ. J. Pharmacol., 55: 177–184.CrossRefGoogle Scholar
  55. Schwabe, U. 1983. General aspects of binding of ligands to adenosine receptors. In: Regulatory Function of Adenosine, pp. 77–96. Ed. by Berne, R. M., Rail, T. W., and Rubio R. Martinus Nijhoff, The Hague.CrossRefGoogle Scholar
  56. Schwabe, U., and Trost, T. 1980. Characterization of adenosine receptors in rat brain by (-) pHJN6- phenylisopropyladenosine. Naunyn-Schmiedebergs Arch. Pharmacol., 375: 179–187.Google Scholar
  57. Schwabe, U., Kiffe, H., Puchstein, C., and Trost, T. 1979. Specific binding of 3H-adenosine to rat brain membranes. Naunyn-Schmiedebergs Arch. Pharmacol., 310: 59–61.Google Scholar
  58. Schwabe, U., Lenschow, V., Ukena, D., Ferry, D. R., and Glossmann, H. 1982. [125I]N6-p- Hydroxyphenylisopropyladenosine, a new ligand for Ri adenosine receptors. Naunyn-Schmie- debergs Arch. Pharmacol., 327: 84–87.Google Scholar
  59. Smellie, F. W., Daly, J. W., Dunwiddie, T. V., and Hoffer, B. J. 1979. The dextro and levorotatory isomers of N6-phenylisopropyladenosine: Stereospecific effects on cyclic AMP-formation and evoked synaptic responses in brain slices. Life Sci., 25: 1739–1748.Google Scholar
  60. Snyder, S. H., Pasternak, G. W., and Pert, C. B. 1975. Opiate receptor mechanisms. In: Handbook of Psychopharmacology pp. 329–360. Ed. by Iversen, L. L., Iversen, S. D., and Snyder, S. H. Plenum Press, New York.Google Scholar
  61. Trost, T., and Schwabe, U. 1981. Adenosine receptors in fat cells. Identification by (-)-N6- [3H]phenylisoproyladenosine binding. Mol Pharmacol., 79: 228–235.Google Scholar
  62. Tsai, B. S., and Lefkowitz, R. J. 1979. Agonist-specific effects of guanine nucleotides on alpha- adrenergic receptors in human platelets. Mol. Pharmacol., 76: 61–68.Google Scholar
  63. Ukena, D. 1982. Identification of adenosine receptors on intact fat cells. Naunyn-Schmiedebergs Arch. Pharmacol., Suppl. 379. R6.Google Scholar
  64. Ukena, D., Martens, D., and Schwabe, U. 1982. Specific binding of 5’-N-ethylcarboxamido [3H]adenosine to calf thymocyte membranes. Naunyn-Schmiedebergs Arch. Pharmacol., Suppl. 327. R39.Google Scholar
  65. Ukena, D., Furier, R., Lohse, M. J., Engel, G., and Schwabe, U. 1984a. Labelling of Rj adenosine receptors in rat fat cell membranes with (-)[125Iodo]N6-hydroxyphenylisopropyladenosine re-ceptors. Naunyn-Schmiedebergs Arch. Pharmacol., 326: 233–240.Google Scholar
  66. Ukena, D., Poeschla, E., Hüttemann, E., and Schwabe, U. 1984b. Effects of N-ethylmaleimide on adenosine receptors of rat cells and human platelets. Naunyn-Schmiedebergs Arch. Pharmacol., 327: 247–253.PubMedCrossRefGoogle Scholar
  67. Ukena, D., Poeschla, E., and Schwabe, U. 1984c. Guanine nucleotide and cation regulation of ra-dioligand binding to Ri adenosine receptors of rat fat cells. Naunyn-Schmiedeberg’s Arch. Phar-macol., 326: 241–247.Google Scholar
  68. Van Calker, D., Müller, M., and Hamprecht, B. 1979. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem., 33: 999–1005.PubMedCrossRefGoogle Scholar
  69. Vapaatalo, H., Onken, D., Neuvonen, P. J., and Westermann, E. 1975. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine ( PIA ). Arzneim.-Forsch., 25: 407–410.Google Scholar
  70. Weiland, G. A. and Molinoff, P. B. 1981. Quantitative analysis of drug-receptor interactions: I. De-termination of kinetic and equilibrium properties. Life Sci., 29: 313–330.Google Scholar
  71. Westermann, E., and Stock, K. 1970. Inhibitors of lipolysis: Potency and mode of action of α- and β-adrenolytics, methoxamine derivatives, prostaglandin Ei and phenylisopropyl adenosine. In: Adipose Tissue, Regulation and Metabolic Functions pp. 47–54. Ed. by Jeanrenaud, B. and Hepp, D. Georg Thieme Verlag, Stuttgart, Academic Press, New York.Google Scholar
  72. Whittaker, V. P. 1969. The synaptosome. In: Handbook of Neurochemistry, Vol. 2, pp. 327–364. Ed. by Lajtha, A. Plenum Press, New York.Google Scholar
  73. Williams, L. T., and Lefkowitz, R. J. 1978. Receptor Binding Studies in Adrenergic Pharmacology. Raven Press, New York.Google Scholar
  74. Williams, L. T., Jarett, L., and Lefkowitz, R. J. 1976. Adipocyte ß-adrenergic receptors. Identification and subcellular localization by (-)-[3H]dihydroalprenolol binding. J. Biol. Chem., 257: 3096–3104.Google Scholar
  75. Williams, M., and Risley, E. A. 1980a. High affinity binding of 2-chloroadenosine to rat brain synaptic membranes. Europ. J. Pharmacol., 64: 369–370.CrossRefGoogle Scholar
  76. Williams, M., and Risley, E. A., 1980b. Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc. Natl Acad. Sci. USA, 77: 6892–6896.PubMedCrossRefGoogle Scholar
  77. Williams. M., and Risley, E. A. 1982. Interaction of the benzodiazepine antagonists, CGS 8216 and Ro 15-1788, with central adenosine A-l receptors. Arch. Int. Pharmacodyn. Ther., 260: 50–53.Google Scholar
  78. Wu, P. H., and Phillis, J. W. 1982. Adenosine receptors in rat brain membranes: characterization of high affinity binding of [3H]-2-chloroadenosine. Int. J. Biochem., 74: 399–404.CrossRefGoogle Scholar
  79. Wu, P. H., Phillis, J. W., Balls, K., and Rinaldi, B. 1980. Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes. Can. J. Physiol. Pharmacol., 55: 576–579.Google Scholar
  80. Yeung, S.-M. and Green, D. 1983. Agonist and antagonist affinities for inhibitory adenosine receptors are reciprocally affected by 5’-guanylyl-imidodiphosphate or N6-ethylmaleimide. J. Biol. Chem., 258: 2334–2339.Google Scholar
  81. Young, W. C., and Kuhar, M. J. 1979. A new method for receptor autoradiography: [3H]opioid receptors in rat brain. Brain Res., 779: 255–270.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ulrich Schwabe
    • 1
  1. 1.Pharmakologisches InstitutUniversität HeidelbergFederal Republic of Germany

Personalised recommendations