The Classification of Receptors for Adenosine and Adenine Nucleotides

  • Geoffrey Burnstock
  • Noel J. Buckley


Adenosine and adenine nucleotides exert potent extracellular actions on a wide range of physiological systems, including the nervous, cardiovascular, gastrointestinal, urogenital, respiratory and lymphatic systems (Drury and Szent-Györgi, 1929; Green and Stoner, 1950; Burnstock, 1972, 1975, 1981; Phillis and Wu, 1982; Berne et al., 1983; Daly et al., 1983b). Many of these actions are mediated via purinergic receptors, and since the introduction of the P1/P2, A1/A2, and Ri/Ra classification systems for purinoceptors (Burnstock, 1978; Van Calker et al., 1979; Londos et al., 1980), much attention has focussed on the characterization of these receptor types in a range of tissues. By way of introduction, we present a brief overview of the means by which receptors may be classified before considering the application of these techniques to the classification of purinoceptors into P1 and P2 subtypes followed by an appraisal of the proposed A1/A2 subclassification of the Pi purinoceptor. A more detailed consideration of these individual aspects may be found in accompanying chapters. We conclude the chapter with a brief assessment of the validity of the existing classification systems and the prospects for future developments in this expanding field of research.


Adenylate Cyclase Adenosine Receptor Adenine Nucleotide Adenosine Deaminase Purinergic Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, R. P. 1948. A study of adrenotropic receptors. Am. J. Physiol., 153. 586–599.PubMedGoogle Scholar
  2. Baer, H. P., and Muller, M. J. 1983. Adenosine receptors in smooth muscle. In: Regulatory Functions of Adenosine p. 500. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.Google Scholar
  3. Banks, B. E. C., Brown, C., Burgess, G. M., Burnstock, G., Claret, M., Cocks, T., Jenkinson, D.H., and Parson, H. 1979. Some peripheral activities of apamin, Toxic on, 17 (Suppl. 1): 4.Google Scholar
  4. Berne, R. M., Rail, T. W., and Rubio, R. (eds.). 1983. Regulatory Functions of Adenosine. Martinus Nijhoff, Boston.Google Scholar
  5. Boeynaems, J. M., and Dumont, J. E. (eds) 1980. Outlines of Receptor Theory. Elsevier, Amsterdam.Google Scholar
  6. Brown, C., and Burnstock, G. 1981. Evidence in support of the P1/P2 purinoceptor hypothesis in the guinea-pig taenia coli. Br. J. Pharmacol., 73: 617–624.PubMedCrossRefGoogle Scholar
  7. Brown, C. M., and Collis, M. G. 1982. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea. Br. J. Pharmacol., 76: 381–387.PubMedCrossRefGoogle Scholar
  8. Brown, C., Burnstock, G., Cusack, N. J., Meghji, P., and Moody, C. J. 1982a. Evidence for stere- ospecificity of the Prpurinoceptor. Br. J. Pharmacol., 75: 101–107.PubMedCrossRefGoogle Scholar
  9. Brown, C. M., Collis, M. G., and Titley, K. 1982b. Evidence for a presynaptic Ai adenosine receptor in the rabbit portal vein. Br. J. Pharmacol., 77. 537 P.Google Scholar
  10. Bruns, R. F. 1980. Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can. J. Physiol. Pharmacol., 58: 673–691.PubMedCrossRefGoogle Scholar
  11. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1980. Adenosine receptors in brain membranes: Binding of N6-cyclohexyl[3H]adenosine and l,3-diethyl-8-[3H]phenylxanthine. Proc. Natl. Acad. Sci. USA, 77: 5547–5551.PubMedCrossRefGoogle Scholar
  12. Bruns, R. F., Daly, J. W., and Snyder, S. H. 1983. Adenosine receptor binding: Structure-activity analysis generates extremely potent xanthine antagonists. Proc. Natl. Acad. Sci. USA, 80: 2011–2080.CrossRefGoogle Scholar
  13. Buckley, N., and Burnstock, G. 1983a. Autoradiographic localisation of peripheral adenosine binding sites using 3H-NECA. Brain Res., 269: 314–311.CrossRefGoogle Scholar
  14. Buckley, N., and Burnstock, G. 1983b. Autoradiographic localisation of binding sites for muscarinic and adenosine receptor ligands. Neurosci. Letts. (Suppl.), 14: 546.Google Scholar
  15. Burger, R. M., and Lowenstein, J. M. 1970. Preparation and properties of 5’-nucleotidase from smooth muscle of small intestine. J. Biol. Chem., 245: 6274–6280.PubMedGoogle Scholar
  16. Burnstock, G. 1972. Purinergic nerves. Pharmacol. Rev., 24: 509–581.PubMedGoogle Scholar
  17. Burnstock, G. 1975. In: Handbook of Psychopharmacology, Vol. 5, Synaptic modulators, pp. 131–194. Ed. by Iversen, L. L., Iversen, S. D., and Snyder, S. H. Plenum Press, New York.Google Scholar
  18. Burnstock, G. 1978. A basis for distinguishing two types of purinergic receptor. In: Cell Membrane Receptors for Drugs and Hormones, pp. 107–118. Ed. by Straub, R. W., and Bolis, L. Raven Press, New York.Google Scholar
  19. Burnstock, G. (ed.). 1981. Purinergic Receptors. Chapman and Hall, London.Google Scholar
  20. Burnstock, G., and Brown, C. 1981. An introduction to purinergic receptors: history, classification and future developments. In: Purinergic Receptors, pp. 1–45. Ed. by Burnstock, G. Chapman and Hall, London.CrossRefGoogle Scholar
  21. Burnstock, G., Cusack, N. J., Hills, J. M., MacKenzie, I., and Meghji, P. 1983. Studies on the stereoselectivity of the P2-purinoceptor. Br. J. Pharmacol., 79: 907–913.PubMedCrossRefGoogle Scholar
  22. Burnstock, G., Hills, J. M., and Hoyle, C. H. W. 1984. Evidence that the Prpurinoceptor in the guinea-pig taenia coli is an A2 subtype. Br. J. Pharmacol., 81: 533–541.PubMedCrossRefGoogle Scholar
  23. Clanachan, A. S. 1981. Antagonism of presynaptic adenosine receptors by theophylline 9-beta-D-riboside and 8-phenyltheophylline. Can. J. Physiol. Pharmacol., 59: 603–606.Google Scholar
  24. Coffin, V. L., and Carney, J. M. 1983. Behavioral pharmacology of adenosine analogs. In: Physiology and Pharmacology of Adenosine Derivatives, pp. 267–274 Ed. by Daly, J. W., Kuroda, Y., Phillis, J. W., Shimizu H., and Ui, M. Raven Press, New York.Google Scholar
  25. Collis, M. G. 1983. Evidence for an Aradenosine receptor in the guinea-pig atrium. Br. J. Pharmacol., 78: 201–212.CrossRefGoogle Scholar
  26. Collis, C., And Brown, C. 1983. Adenosine relaxes the aorta by interacting with an A2 receptor and an intracellular site. Br. J. Pharmacol., 79: 256 P.Google Scholar
  27. Collis, M. G., and Pettinger, S. J. 1982. Can ATP stimulate Pi-receptors in guinea-pig atrium without conversion to adenosine? Eur. J. Pharmacol., 81: 521–529.PubMedCrossRefGoogle Scholar
  28. Cooper, D. M. F., Londos, C., and Rodbell, M. 1980. Adenosine receptor-mediated inhibition of rat cerebral cortical adenylate cyclase by a GTP-dependent process. Mol. Pharmacol., 75: 598–601.Google Scholar
  29. Cusack, N. J., and Planker, M. 1979. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br. J. Pharmacol., 67: 153–158.PubMedGoogle Scholar
  30. Cusack, N. J., Hickman, M. E., and Born, G. V. R. 1979. Effects of D- and L-enantiomers of adenosine, AMP and ADP and thleir 2-chloro- and 2-azido-analogues on human platelets. Proc. R. Soc. B., 206: 139–144.CrossRefGoogle Scholar
  31. Daly, J. W. 1983. Role of ATP and adenosine receptors in physiologic processes: Summary and prospectus. In: Physiology and Pharmacology of Adenosine Derivatives pp. 275–290. Ed. by Daly, J. W., Kuroda, Y., Phillis, J. W., and Ui, M. Raven Press, New York.Google Scholar
  32. Daly, J. W., Bruns, R. F., and Snyder, S. H. 1983a. Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci., 28: 2083–2097.CrossRefGoogle Scholar
  33. Daly, J. W., Kuroda, Y., Phillis, J. W., and Ui, M. (eds.). 1983b. Physiology and Pharmacology of Adenosine Derivatives. Raven Press, New York.Google Scholar
  34. Drury, A. N., and Szent-Györgi, A. 1929. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. (Lond.), 28: 213–237.Google Scholar
  35. Dunwiddie, T. V., and Fredholm, B. B. 1982. Adenosine receptors in the rat hippocampus. Proc. Scand. Brit. Pharmac. Soc. P8.Google Scholar
  36. Dutta, P., and Mustafa, S. J. 1979. Saturable binding of adenosine to the dog heart microsomal fraction: competitive inhibition by aminophylline. J. Pharmacol. Exp. Ther., 211: 496–501.PubMedGoogle Scholar
  37. Dutta, P., and Mustafa, S. J. 1980. Binding of adenosine to the crude plasma membrane fraction isolated from dog coronary and carotid arteries. J. Pharmacol. Exp. Ther., 214: 496–502.PubMedGoogle Scholar
  38. Evans, D. B., and Schenden, J. A. 1982. Adenosine receptors mediating cardiac depression. Life Sci., 31: 2425–2432.PubMedCrossRefGoogle Scholar
  39. Fenton, R. A., Bruttig, S. P., Rubio, R., and Berne, R. M. 1982. Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am. J. Physiol., 242. H797–H804.Google Scholar
  40. Fredholm, B. B., and Persson, C. G. A. 1982. Xanthine derivatives as adenosine receptor antagonists. Eur. J. Pharmacol., 57: 673–676.CrossRefGoogle Scholar
  41. Fredholm, B. B., Jonzon, B., Lindgren, E. and Lindstrom, K. 1982. Adenosine receptors mediating cyclic AMP production in the rat hippocampus, J. Neurochem., 59: 165–175.CrossRefGoogle Scholar
  42. Fredholm, B. B., Gustafsson, L. E., Hedqvist, P., and Sollevi, A. 1983. Adenosine in the regulation of neurotransmitter release in the peripheral nervous system. In: Regulatory Functions of Adenosine, p. 479–493 Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  43. Frew, R., and Lundy, P. M. 1982. Effect of arylazido aminopropionyl ATP (ANAPP3), a putative ATP antagonist, on ATP responses of isolated guinea-pig smooth muscle. Life Sci., 30: 259–267.PubMedCrossRefGoogle Scholar
  44. Gavish, M., Goodman, R. R., and Snyder, S. H. 1982. Solubilized adenosine receptors in the brain: Regulation by guanine nucleotides. Science, 215: 1633–1635.PubMedCrossRefGoogle Scholar
  45. Ghai, G., and Mustafa, S. J. 1982. Demonstration of a putative adenosine receptor in rabbit aorta. Blood Vessels, 79: 117–125.Google Scholar
  46. Goodman, R. R., and Snyder, S. H. 1982. Autoradiographic localization of adenosine in rat brain using [3H]cyclohexyladenosine. J. Neurosci., 2: 1230–1241.PubMedGoogle Scholar
  47. Green, H. N., and Stoner, H. B. 1950. Biological Actions of the Adenine Nucleotides. Lewis, London.Google Scholar
  48. Griffith, S., Meghji, P., Moody, C. J., and Burnstock, G. 1981. 8-Phenyltheophylline: A potent adenosine antagonist. Eur. J. Pharmacol., 75: 61–64.Google Scholar
  49. Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Hulme, E. C. 1980. Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature, 283: 90–92.PubMedCrossRefGoogle Scholar
  50. Haslam, R. J., and Cusack, N. J. 1981. Blood platelet receptors for ADP and for adenosine. In: Purinergic receptors, pp. 221–285. Ed. by Burnstock, G. Chapman and Hall, London.CrossRefGoogle Scholar
  51. Henon, B. K., and McAfee, D. A. 1983. The ionic basis of adenosine receptor actions on postganglionic neurones in the rat. J. Physiol. (Lond.), 556: 607–620.Google Scholar
  52. Hogaboom, G. K., O’Donnell, J. P., and Fedan, J. S. 1980. Purinergic receptors: Photoaffinity analog of adenosine triphosphate is a specific adenosine triphosphate antagonist. Science, 205: 1273–1276.CrossRefGoogle Scholar
  53. Kasakov, L., and Burnstock, G. 1983. The use of the slowly degradable analog, a, p-methylene ATP, to produce desensitization of the P2-purinoceptor: Effect on non-adrenergic, non-cholinergic responses of the guinea-pig urinary bladder. Eur. J. Pharmacol., 86: 291–294.CrossRefGoogle Scholar
  54. Kennedy, C., and Burnstock, G. 1984. Evidence for an inhibitory pre-junctional Prpurinoceptor, with characteristics of the A2-subtype, in the rat portal vein. Eur. J. Pharmacol., 700: 363–368.CrossRefGoogle Scholar
  55. Kusachi, S., Thompson, R. D., and Olsson, R. A. 1983. Ligand selectivity of dog coronary adenosine receptors resembles that of adenylate cyclase stimulatory (Ra) receptors. J. Pharmacol. Exp. Ther., 227: 316–321.PubMedGoogle Scholar
  56. Lands, A. M., Arnold, A., McAuliff, J. P., Ludena, F. P., and Brown, T. G. 1967. Differentiation of receptor systems activated by sympathomimetic amines. Nature, 274: 597–598.CrossRefGoogle Scholar
  57. Lenschow, V., Hiittemann, E., Ukena, D., and Schwabe, U. 1982. Study of Ra adenosine receptors inhuman platelets by radioligand binding. Naunyn-Schmiedebergs Arch. Pharmacol., 321 (Suppl.): R31.Google Scholar
  58. Londos, C., Cooper, D. M. F., and Wolff, J. 1980. Subclasses of external adenosine receptors, Proc. Natl. Acad. Sci. USA, 77: 2551–2554.PubMedCrossRefGoogle Scholar
  59. Malbon, C. C., Hert, R. C., and Fain, J. N. 1978. Characterization of [3H]adenosine binding to fat cell membranes. J. Biol. Chem., 253: 3114–3122.PubMedGoogle Scholar
  60. Manery, J. F., and Dryden, E. E. 1979. Ecto-enzymes concerned with nucleotide metabolism. In: Physiology and Regulatory Functions of Adenosine and Adenine Nucleotides, pp. 323–339. Ed. by Baer, H. P., and Drummond, G. I. Raven Press, New York.Google Scholar
  61. Meldrum, L., and Burnstock, G. 1983. Evidence that ATP acts as a co-transmitter with noradrenaline in sympathetic nerves supplying the guinea-pig vas deferens. Eur. J. Pharmacol., 92: 161–163.PubMedCrossRefGoogle Scholar
  62. Mistry, G., and Drummond, G. I. 1983. Effects of adenosine, its analogs, adrenergic agents, and prostaglandins on adenylate cyclase of heart microvessels. In: Regulatory Functions of Adenosine, p. 529. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.Google Scholar
  63. Moody, C. M., Meghji, P., and Burnstock, G. 1984. Stimulation of Prpurinoceptors by ATP depends partly on its conversion to AMP and adenosine and partly on direct action. Eur. J. Pharmacol., 97: 55–65.CrossRefGoogle Scholar
  64. Murphy, K. M. M., and Snyder, S. H. 1981. Adenosine receptors in rat testes: Labeling with [3H]cyclohexyladenosine. Life Sci., 25: 917–920.CrossRefGoogle Scholar
  65. Newman, M., and Levitzki, A. 1982. Characteristics of high-affinity binding to rat brain synaptosomes and turkey erythrocyte membranes. Biochim. Biophys. Acta, 685: 129–136.PubMedCrossRefGoogle Scholar
  66. Newman, M. E., Patel, J., and Mcllwain, H. 1981. The binding of adenosine to synaptosomal and other preparations from the mammalian brain. Biochem. J., 194: 611–620.PubMedGoogle Scholar
  67. Olsson, R. A., and Kusachi, S. 1983. Adenosine (Ado) initiates coronary relaxation via adenylate cyclase-associated stimulatory (Ra) receptors In: Regulatory Functions of Adenosine, p. 532. Ed. by Berne, R. M., Rail, T. W., and Rubio, A. Martinus Nijhoff, Boston.Google Scholar
  68. Paterson, A. R. P., Lau, E. Y., Dahlig, E., and Cass, C. E. 1980. A common basis for inhibition of nucleoside transport by dipyridamole and nitrobenzylthioninosine? Mol. Pharmacol., 18: 40–44.PubMedGoogle Scholar
  69. Paton, D. M. 1981. Structure-activity relations for presynaptic inhibition of noradrenergic and cholinergic transmission by adenosine: evidence for action on A1 receptors. J. Auton. Pharmacol., 7: 287–290.CrossRefGoogle Scholar
  70. Paton, D. M. 1983. Evidence for Ai receptors for adenosine in heart and in adrenergic and cholinergic nerves. In: Physiology and Pharmacology of Adenosine Derivatives, pp. 275–290 Ed. by Daly, J. W., Kuroda, Y., Phillis, J. W., and Ui, M. Raven Press, New York.Google Scholar
  71. Paton, D. M., and Kurahashi, K. 1981. Structure-activity relations for negative chronotropic action of adenosine in isolated rat atria: Evidence for an action on Ai receptors. IRCS Med. Sci., 9: 447.Google Scholar
  72. Phillis, J. W., and Wu, P. H. 1982. The role of adenosine and its nucleotides in central synaptic transmission. Progr. Neurobiol., 76: 187–239.Google Scholar
  73. Phillis, J. W., and Wu, P. H. 1983. Roles of adenosine and adenine nucleotides in the central nervous system. In: Physiology and Pharmacology of Adenosine Derivatives, pp. 219–236. Ed. by Daly, J. W., Kuroda, Y., Phillis, J. W., Shimizu, H., and Ui, M. Raven Press, New York.Google Scholar
  74. Plunkett, W., Alexander, L., Chubb, S., and Loo, T. L. 1979. Comparison of the activity of 2’- deoxycoformycin and etythro-9-(2-hydroxy-3-nonyl) adenine in vivo. Biochem. Pharmacol., 28: 201–206.PubMedCrossRefGoogle Scholar
  75. Reddingon, M., and Schubert, P. 1979. Parallel investigations of the effects of adenosine on evoked potentials and cyclic AMP accumulation in hippocampus slices of the rat. Neurosci. Lett., 14: 31–42.CrossRefGoogle Scholar
  76. Reddington, M., Lee, K. S., and Schubert, P. 1982. An Aradenosine receptor, characterized by [3H]cyclohexyladenosine binding, mediates the depression of evoked potentials in a rat hippo- campal slice preparation. Neurosci. Lett., 28: 215–219.CrossRefGoogle Scholar
  77. Rodbell, M. 1980. The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature, 284: 11–22.CrossRefGoogle Scholar
  78. Rubin, R. P. 1970. The role of Ca2+ in the release of neurotransmitter substances and hormones. Pharmacol. Rev., 22: 389–428.PubMedGoogle Scholar
  79. Schräder, J., Rubio, R., and Berne, R. M. 1975. Inhibition of slow action potentials of guinea-pig atrial muscle by adenosine: A possible effect on Ca2+ influx. J. Mol. Cell Cardiol., 7: 427–433.PubMedCrossRefGoogle Scholar
  80. Schuba, M. F., and Vladimirova, I. A. 1980. Effect of apamin on the electrical responses of smooth muscle to adenosine-5’-triphosphate and to non-adrenergic, non-cholinergic nerve stimulation. Neuroscience, 5: 853–859CrossRefGoogle Scholar
  81. Schütz, W., and Brugger, G. 1982. Characterization of [3H]adenosine binding to media membranes of hog carotid arteries. Pharmacology, 24: 26–34.PubMedCrossRefGoogle Scholar
  82. Schütz, W., Steurer, G., and Tuisl, E. 1982a, Functional identification of adenylate cyclase-coupled adenosine receptors in rat brain micro vessels. Europ. J. Pharmacol., 55. 177–184.CrossRefGoogle Scholar
  83. Schütz, W., Tuisl, E., and Kraupp, O. 1982b. Adenosine receptor agonists: Binding and adenylate cyclase stimulation in rat liver plasma membranes. Naunyn Schmiedebergs Arch. Pharmacol., 319: 34–39.PubMedCrossRefGoogle Scholar
  84. Schwabe, U. 1983. General aspects of binding of ligands to adenosine receptors. In: Regulatory Functions of Adenosine, pp. 77–96. Ed. by Berne, R. M., Rail, T. W., and Rubio, R. Martinus Nijhoff, Boston.CrossRefGoogle Scholar
  85. Schwabe, U., and Trost, T. 1980. Characterization of adenosine receptors in rat brain by (-)[3H]N6- phenylisopropyladenosine. Naunyn Schmiedebergs Arch. Pharmacol., 3 /3: 179–187.Google Scholar
  86. Schwabe, U., Kiffe, H., Puchstein, C., and Trost, T. 1979. Specific binding of [3H]adenosine to rat brain membranes. Naunyn Schmiedebergs Arch. Pharmacol., 310: 59–61.PubMedCrossRefGoogle Scholar
  87. Skolnick, P., Nimitkitpaison, Y., Stalvey, L., and Daly, J. W. 1978. Inhibition of brain adenosine deaminase by 2’-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl)adenine. J. Neurochem., 30: 1579–1582.CrossRefGoogle Scholar
  88. Smellie, F. W., Daly, J. W., Dunwiddie, T. V., and Hoffer, B. J. 1979. The dextro and laevorotatory isomers of 7V-phenylisopropyladenosine: Stereospecific effects on cyclic AMP formation and evoked responses in brain slices, Life Sci., 25: 1739–1748.PubMedCrossRefGoogle Scholar
  89. Sneddon, P., and Burnstock, G. 1984. Inhibition of excitatory junction potentials in guinea-pig vas deferens by α, β-methylene-ATP: Further evidence for ATP and noradrenaline as cotramsmitters. Europ. J. Pharmacol., 700: 85–90.CrossRefGoogle Scholar
  90. Snyder, S. H., Katims, J. J., Annau, Z., Bruns, R. F., and Daly, J. W. 1981. Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sei. USA, 75: 3260–3264.CrossRefGoogle Scholar
  91. Stone, T. W. 1983. Purine receptors in the rat annococcygeus muscle. J. Physiol. ( Lond.), 335: 591–608.Google Scholar
  92. Su, C. 1981. Purinergic receptors in blood vessels. In: Purinergic Receptors, pp. 93–117. Ed. by Burnstock, G. Chapman and Hall, London.CrossRefGoogle Scholar
  93. Triggle, D. J., and Triggle, C. R. 1976. The molecular basis of neurotransmitter-receptor interactions. In: Chemical Pharmacology of the Synapse, pp. 431–594. Ed. by Triggle, D. J. and Triggle, C. R. Academic Press, London.Google Scholar
  94. Trost, T., and Schwabe, U. 1981. Adenosine receptors in fat cells. Identification by (-)-N6- [3H]phenylisopropyladenosine binding. Mol. Pharmacol., 79: 228–235.Google Scholar
  95. Turnheim, K., Plank, B., and Kolassa, N. 1978. Inhibition of adenosine uptake in human erythrocytes by adenosine-5’-carboxamides, xylosyladenine, dipyridamole, hexobendine and p-nitrobenzylthioguanosine. Biochem. Pharmacol., 27: 2191–2197.PubMedCrossRefGoogle Scholar
  96. Ukena, D., Martens, D., and Schwabe, U. 1982. Specific binding of 5’-N-ethylcarboxamide[3H]adenosine to calf thymocyte membranes. Naunyn-Schmiedeberg’s Arch. Pharmacol., 321 (Suppl. RM.Google Scholar
  97. Van Calker, D., Muller, M., and Hamprecht, B. 1979. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J. Neurochem., 33: 999–1005.PubMedCrossRefGoogle Scholar
  98. Vapaatalo, H., Bieck, P., and Westerman, E. 1971. Action of phenylisopropyladenosine (PIA) on the synthesis of corticosterone. Naunyn Schmiedebergs Arch. Pharmacol., 269: 465–466.Google Scholar
  99. Vapaatalo, H., Onken, D., Neuvonen, P. J., and Westermann, E. 1975. Stereospecificity in some central and circulatory effects of phenylisopropyladenosine ( PIA ), Arzneimittelforsch., 25: 407–410.PubMedGoogle Scholar
  100. Williams, M., and Risley, E. A. 1980. Biochemical characterization of putative central purinergic receptors by using 2-chloro[3H]adenosine, a stable analog of adenosine. Proc. Natl. Acad. Sci. USA, 77: 6892–6896.PubMedCrossRefGoogle Scholar
  101. Wojcik, W. J., and Neff, N. H. 1983. Differential location of adenosine A1 and A2 receptors in striatum. Neurosci. Lett., 41: 55–60.PubMedCrossRefGoogle Scholar
  102. Wu, P. H., and Phillis, J. W. 1982. Adenosine receptors in rat brain membranes: characterization of high affinity binding of [3H]-2-chloroadenosine. Int. J. Biochem., 14: 399–404.PubMedCrossRefGoogle Scholar
  103. Wu, P. H., Phillis, J. W., Balls, K., and Rinaldi, B. 1980. Specific binding of 2-[3H]chloroadenosine to rat brain cortical membranes. Can. J. Physiol. Pharmacol., 58: 516–519.Google Scholar
  104. Wu, P. H., Phillis, J. W., and Thierry, D. L. 1982. Adenosine receptor agonists inhibit K+-evoked Ca2+ uptake by rat brain cortical synaptosomes. J. Neurochem., 59: 700–708.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Geoffrey Burnstock
    • 1
  • Noel J. Buckley
    • 1
  1. 1.Department of Anatomy and Embryology Center for NeuroscienceUniversity College, LondonLondonEngland

Personalised recommendations