Advertisement

The Use of Ligands in the Study of the Nucleoside-Transport Complex

Nitrobenzylthioinosine
  • James D. Young
  • Simon M. Jarvis

Abstract

Permeation of physiological and cytotoxic nucleosides across the plasma membrane of animal cells is mediated largely by nucleoside-specific transporters sensitive to inhibition by nanomolar concentrations of nitrobenzylthioinosine (NBMPR) and related 6-thiopurine ribonucleosides. Transport inhibition by NBMPR results from reversible high-affinity binding of ligand to cell membranes, an association that represents a specific interaction with functional nucleoside transport proteins. The commercial availability of high-specific activity [3H]-NBMPR within the last few years has led to significant advances in our knowledge of the kinetic and molecular properties of this carrier system. In the present chapter we detail and discuss the methodologies associated with the use of this ligand.

Keywords

Human Erythrocyte Nucleoside Transport Mouse Lymphoma Cell Purify Plasma Membrane Crude Membrane Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belt, J. A. 1983. Nitrobenzylthioinosine-insensitive uridine transport in human lymphoblastoid and murine leukemia cells. Biochem. Biophys. Res. Commun, 110: 417–423.PubMedCrossRefGoogle Scholar
  2. Belt, J. A., Jarvis, S. M., Paterson, A. R. P., Tse, C. M., Wu, J. S. and Young, J. D. 1984. Reconstitution of the human erythrocyte nucleoside transporter into liposomes. J. Physiol, 353: 87 P.Google Scholar
  3. Cabantchik, Z. I., and Ginsburg, H. 1977. Transport of uridine in human red blood cells. Demonstration of a simple carrier mechanism. J. Gen. Physiol, 69: 75–96.PubMedCrossRefGoogle Scholar
  4. Cass, C. E., and Paterson, A. R. P. 1976. Nitrobenzylthioinosine binding sites in the erythrocyte membrane. Biochim. Biophys. Acta, 419: 285–294.PubMedCrossRefGoogle Scholar
  5. Cass, C. E., Gaudette, L. A., and Paterson, A. R. P. 1974. Mediated transport of nucleosides in human erythrocytes. Specific binding of the inhibitor nitrobenzylthioinosine to nucleoside transport sites in the erythrocyte membrane. Biochim. Biophys. Acta, 345: 1–10.PubMedCrossRefGoogle Scholar
  6. Cass, C. E., Kolassa, N., Uehara, Y., Dahlig-Harley, E., Harley, E. R., and Paterson, A. R. P. 1981. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport- deficient mouse lymphoma cells. Biochim. Biophys. Acta, 649: 169–111.Google Scholar
  7. Cohen, A., Ullman, B., and Martin, D. W. Jr. 1979. Characterization of a mutant mouse lymphoma cell with deficient transport of purine and pyrimidine nucleosides. J. Biol. Chem, 254.-112–116.PubMedGoogle Scholar
  8. Dahlig-Harley, E., Eilam, Y., Paterson, A. R. P., and Cass, C. E. 1981. Binding of nitrobenzylthioi-nosine to high affinity sites on the nucleoside transport mechanism of HeLa cells. Biochem. J, 200: 295–305.PubMedGoogle Scholar
  9. Eilam, Y., and Cabantchik, Z. I. 1977. Nucleoside transport in mammalian cell membranes: a specific inhibitory mechanism of high affinity probes. J. Cell Physiol, 92: 185–202.PubMedCrossRefGoogle Scholar
  10. Harley, E. R., Paterson, A. R. P., and Cass, C. E. 1982. Initial rate kinetics of the transport of adenosine. Cancer Res., 42: 1289–1295.PubMedGoogle Scholar
  11. Jarvis, S. M., and Young, J. D. 1980. Nucleoside transport in human and sheep erythrocytes: evidence that nitrobenzylthioinosine binds specifically to functional nucleoside transport sites. Biochem. J, 790: 377–383.Google Scholar
  12. Jarvis, S. M., and Young, J. D. 1981. Extraction and partial purification of the nucleoside transport system from human erythrocytes based on the assay of nitrobenzylthioinosine binding activity. Biochem. J, 194: 331–339.PubMedGoogle Scholar
  13. Jarvis, S. M., and Young, J. D. 1982a. Nucleoside translocation in sheep reticuloytes and erythrocytes from newborn lambs. A proposed model for the nucleoside transporter. J. Physiol. (Lond.), 324: 41–66.Google Scholar
  14. Jarvis, S. M., and Young, J. D. 1982b. Inhibitor binding studies. Nitrobenzylthioinosine, a specific high-affinity inhibitor of nucleoside transport. In: Red Cell Membranes—A Methodological Approach, pp. 263–273. Ed. by Ellory, J. C., and Young, J. D. Academic Press, London.Google Scholar
  15. Jarvis, S. M., Ellory, J. C., and Young, J. D. 1980. Nucleoside transport in human erythrocytes: Apparent molecular weight of the nitrobenzylthioniosine binding complex estimated by radiation inactivation analysis. Biochem. J 190: 313–316.Google Scholar
  16. Jarvis, S. M., McBride, D., and Young, J. D. 1982a. Erythrocyte nucleoside transport: Asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites. J. Physiol. (Lond.), 324: 31–46.Google Scholar
  17. Jarvis, S. M., Hammond, J. R., Paterson, A. R. P., and Clanachan, A. S. 1982b. Species differences in nucleoside transport: a study of uridine transport and nitrobenzylthioinosine binding. Biochem. J, 208: 83–88.PubMedGoogle Scholar
  18. Jarvis, S. M., Hammond, J. R., Paterson, A. R. P., and Clanachan, A. S. 1983a. Nucleoside transport in human erythrocytes. A simple carrier with directional symmetry in fresh cells but with directional asymmetry in cells from outdated blood. Biochem. J, 210: 451–461.Google Scholar
  19. Jarvis, S. M., Kwong, Y. P., Wu, J. S., and Young, J. D. 1983b, Nitrobenzylthioinosine, a specific photoaffinity probe of the erythrocyte nucleoside transporter. J. Physiol. (Lond.), 343: 93 V.Google Scholar
  20. Jarvis, S. M., Fincham, D. A., Ellory, J. C., Paterson, A. R. P., and Young, J. D. 1983c. Nucleoside transport in human erythrocytes. Nitrobenzylthioinosine binding and uridine transport activities have similar radiation target sizes. Biochim. Biophys. Acta, 772: 227–300.Google Scholar
  21. Jarvis, S. M., Janmohamed, S. N., and Young, J. D. 1983d. Kinetics of nitrobenzylthioinosine binding to the human erythrocyte nucleoside transporter. Biochem. J, 216: 661–661.PubMedGoogle Scholar
  22. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (Lond.), 227: 680–685.CrossRefGoogle Scholar
  23. Paterson, A. R. P., Lau, E. Y., Dahlig, E., and Cass, C. E. 1980. A common basis for inhibition of nucleoside transport by dipyridamole and nitrobenzylthioinosine? Mol. Pharmacol, 75: 40–44.Google Scholar
  24. Paterson, A. R. P., Kolassa, N., and Cass, C. E. 1981. Transport of nucleoside drugs in animal cells. Pharmacol. Ther, 12: 515–536.PubMedCrossRefGoogle Scholar
  25. Plagemann, P. G. W., and Wohlhueter, R. M. 1980. Permeation of nucleosides and nucleic acid bases and nucleotides in animal cells. Curr. Top. Membr. Transp, 74: 225–330.CrossRefGoogle Scholar
  26. Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol, 62: 1–19.PubMedCrossRefGoogle Scholar
  27. Slaughter, R. S., Fenwick, R. G., Jr., and Barnes, E. M. 1981. Hypoxanthine and thymidine compete for transport in Chinese hamster fibroblasts. Arch. Biochem. Biophys, 277: 494–499.CrossRefGoogle Scholar
  28. Thompson, S., and Maddy, A. H. 1982. Gel electrophoresis of erythrocyte membrane proteins. In: Red Cell Membranes—A Methodological Approach, pp. 67–94. Ed. by Ellory, J. C., and Young, J. D. Academic Press, London.Google Scholar
  29. Wohlhueter, R. M., and Plagemann, P. G. W. 1982. On the functional symmetry of nucleoside transport in mammalian cells. Biochim. Biophys. Acta, 689: 249–260.PubMedCrossRefGoogle Scholar
  30. Wohlhueter, R. M., Marz, R., and Plagemann, P. G. W. 1978. Properties of the thymidine transport system of Chinese hamster ovary cells as probed by nitrobenzylthioinosine. J. Membr. Biol, 42: 247–264.PubMedCrossRefGoogle Scholar
  31. Wohlhueter, R. M., Marz, R., and Plagemann, P. G. W. 1979. Thymidine transport in cultured mammalian cells. Kinetic analysis, temperature dependence and specificity of the transport system. Biochim. Biophys. Acta, 553: 261–268.Google Scholar
  32. Wu, J. S., Jarvis, S. M., and Young, J. D. 1983a. The human erythrocyte nucleoside and glucose transporters are both band 4.5 membrane polypeptides. Biochem. J, 274: 995–997.Google Scholar
  33. Wu, J. S., Kwong, F. Y. P., Jarvis, S. M., and Young, J. D. 1983b. Identification of the erythrocyte nucleoside transporter as a band 4.5 polypeptide. Photoaffinity labelling studies using nitrobenzylthioinosine. Biol. Chem, 255: 13745–13751.Google Scholar
  34. Young, J. D., and Jarvis, S. M. 1983. Nucleoside transport in animal cells. Review. Bioscience Reports, 3: 309–322.CrossRefGoogle Scholar
  35. Young, J. D., Jarvis, S. M., Robins, M. J., and Paterson, A. R. P. 1983. Photoaffinity labelling of the human erythrocyte nucleoside transporter by N6-(p-Azidobenzyl) adenosine and nitrobenzylthioinosine. Evidence that the transporter is a band 4.5 polypeptide. J. Biol. Chem, 258: 2202–2208.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • James D. Young
    • 1
  • Simon M. Jarvis
    • 2
  1. 1.Department of Biochemistry, Faculty of MedicineThe Chinese University of Hong KongShatin, N.T.Hong Kong
  2. 2.Department of PhysiologyUniversity of AlbertaEdmontonCanada

Personalised recommendations