Synthesis of Adenosine and Adenine Nucleotide Analogs

  • Noel J. Cusack


Analogs of adenosine and adenine nucleotides have proved of considerable value in the elucidation of the pharmacology of naturally occurring purines. Alterations to the purine, ribose, and phosphate moieties have all provided analogs of pharmacological interest, and some of them are considerably more potent receptor agonists and have a more prolonged pharmacological action than the parent nucleosides and nucleotides. This chapter has been written to provide pharmacologists with a general outline of some manipulations peculiar to the chemistry of adenosine and adenine nucleotides and focuses on procedures that are relatively free from unnecessary complexity. The current availability of a large number of key nucleoside intermediates, chemical reagents, and dried purified solvents has eliminated much of the preliminary tedium formerly associated with their preparation. In the descriptions that follow, it is assumed that all solvents are dry and that all reactions are carried out at room temperature unless otherwise stated.


Adenine Nucleotide Purine Nucleoside Raney Nickel Adenosine Analog Purine Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, E. M., Ryan, K. J., and Goodman, L. 1964. Synthesis of L-ribofuranose and L-adenosine. J. Am. Chem. Soc., 86: 5352–5354.CrossRefGoogle Scholar
  2. Adachi, T., Yamada, Y., Inoue, I., and Saneyoshi, H. 1977. An alternative method of selective reduction of unsaturated nucleoside azides to amines. Synthesis, 9: 45–46.CrossRefGoogle Scholar
  3. Babkina, G. T., Zarytova, V. F., and Knorre, D. G. 1975. Preparation of γ-amides of nucleoside 5’- triphosphates in aqueous solution with water soluble carbodiimide. Bioorg. Khim. ( USSR ), 7: 611–615.Google Scholar
  4. Blackburn, G. M., Kent, D. E., and Kolkmann, F. 1981. Three new β, γ-methylene analogues of adenosine triphosphate. J. Chem. Soc. Chem. Commun., 7957: 1188–1190.CrossRefGoogle Scholar
  5. Borchardt, R. T., Huber, J. A., and Wu, Y. S., 1975. A convenient preparation of S-adenosylhomocysteine and related compounds. J. Org. Chem., 41: 565–567.CrossRefGoogle Scholar
  6. Brentnall, H. J., and Hutchinson, D. W. 1972. Preparation of 8-chloroadenosine and its phosphateesters. Tetrahedron Lett., 7972: 2595–2596.CrossRefGoogle Scholar
  7. Broom, A. D., Uchic, M. E., and Uchic, J. T.. 1976. Combined enzymatic and chemical approaches to the synthesis of unique polyribonucleotides. Biochim. Biophys. Acta, 425: 278–286.PubMedCrossRefGoogle Scholar
  8. Brown, C., Burnstock, G., Cusack, N. J., Meghji, P., and Moody, C. J. 1982. Evidence for stereo-specificity of the Pi-purinoceptor. Br. J. Pharmacol., 75: 101–107.PubMedCrossRefGoogle Scholar
  9. Brown, G. B., and Weliky, V. S. 1953. The synthesis of 9-β-D-ribofuranosyl-purine and the identity of nebularine. J. Biol. Chem., 204: 1019–1024.PubMedGoogle Scholar
  10. Burnstock, G., Cusack, N. J., Hills, J. M., MacKenzie, I., and Meghji, P. 1983. Studies on the stereoselectivity of the P2-purinoceptor. Br. J. Pharmacol., 79: 907–913.PubMedCrossRefGoogle Scholar
  11. Burnstock, G., Cusack, N. J., and Meldrum, L. A. 1984. Effects of phosphorothioate analogues of ATP, ADP and AMP on guinea-pig taenia coli and urinary bladder. Br. J. Pharmacol. 82: 369–374.PubMedCrossRefGoogle Scholar
  12. Cartwright, I. L., Hutchinson, D. W., and Armstrong, V. W. 1976. The reaction between thiols and 8-azidoadenosine derivatives. Nucleic Acid Res., 3: 2331–2339.PubMedCrossRefGoogle Scholar
  13. Cusack, N. J., and Hourani, S. M. O. 1981a. 5’-N-Ethylcarboxamidoadenosine: A potent inhibitor of human platelet aggregation. Br. J. Pharmacol., 72: 443–447.PubMedCrossRefGoogle Scholar
  14. Cusack, N. J., and Hourani, S. M. O. 1981b. Effects of Rp and Sp diastereoisomers of adenosine 5’- O-(l-thiodiphosphate) on human platelets. Br. J. Pharmacol73: 409–412.Google Scholar
  15. Cusack, N. J., and Hourani, S. M. O. 1982a. Specific but noncompetitive inhibition by 2-alkylthio analogues of adenosine 5’-monophosphate and adenosine 5’-triphosphate of human platelet aggregation induced by adenosine 5’-diphosphate. Br. J. Pharmacol., 75: 397–400.PubMedCrossRefGoogle Scholar
  16. Cusack, N. J., and Hourani, S. M. O. 1982b. Adenosine 5’-diphosphate antagonists and human platelets: No evidence that aggregation and inhibition of stimulated adenylate cyclase are mediated by different receptors. Br. J. Pharmacol., 76: 221–227.PubMedCrossRefGoogle Scholar
  17. Cusack, N. J., and Hourani, S. M. O. 1984. Some pharmacological and biochemical interactions of the enantiomers of adenylyl 5’-(β, γ-methylene)-diphosphonate with the guinea-pig urinary bladder. Br. J. Pharmacol. 52: 155–159.CrossRefGoogle Scholar
  18. Cusack, N. J., and Planker, M. 1979. Relaxation of isolated taenia coli of guinea pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br. J. Pharmacol., 67: 153–158.PubMedGoogle Scholar
  19. Cusack, N. J., Hickman, M. E., and Born, G. V. R. 1979. Effects of D-and L-enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido-analogues on human platelets. Proc. Royal Soc. Lond. B, 206: 139–144.CrossRefGoogle Scholar
  20. Cusack, N. J., Pearson, J. D., and Gordon, J. L. 1983. Stereoselectivity of ectonucleotidases on vascular endothelial cells. Biochem. J., 2 /4: 975–981.Google Scholar
  21. Czarnecki, J., Geahlen, R., and Haley, B., 1979, Synthesis and use of azido photoaffinity analogues of adenine and guanine nucleotides. Methods Enzymol., 56: 642–653.PubMedCrossRefGoogle Scholar
  22. Dimitrijevich, S. D., Verheyden, J. P. H., and Moffatt, J. G. 1979. Halo sugar nucleosides. 6. Synthesis of some 5’-deoxy-5’-iodo and 4’, 5’-unsaturated purine nucleosides. J. Org. Chem., 44: 400–406.CrossRefGoogle Scholar
  23. Eckstein, F., and Goody, R. S., 1976. Synthesis and properties of diastereoisomers of adenosine 5’- (O-l-thiotriphosphate) and adenosine 5’-(β-γ-thiotriphosphate). Biochemistry, 75: 1685–1691.CrossRefGoogle Scholar
  24. Engel, J. D. 1975. Mechanism of the Dimroth rearrangement in adenosine. Biochem. Biophys. Res. Commun., 64: 581–586.PubMedCrossRefGoogle Scholar
  25. Fox, J. J., Wempen, I., Hampton, A., and Doerr, I. L. 1958. Thiation of nucleosides. I. Synthesis of 2-amino-6-mercapto-9-p-D-ribofuranosylpurine (“Thioguanosine”) and related purine nucleosides. J. Am. Chem. Soc., 80: 1669–1615.CrossRefGoogle Scholar
  26. Gerster, J. F., and Robins, R. K. 1966. The synthesis of 2-fluoro- and 2-chloroinosine and certain derived purine nucleosides. J. Org. Chem., 31: 3258–3262.PubMedCrossRefGoogle Scholar
  27. Gerster, J. F., Jones, J. W., and Robins, R. K. 1963. Purine nucleosides. IV. The synthesis of 6- halogenated 9-β-D-ribofuranosylpurines from inosine and guanosine. J. Org. Chem., 25: 945–948.CrossRefGoogle Scholar
  28. Giner-Sorolla, A., Medrek, L., and Bendick, A. 1966. Synthesis and biological activity of 9-β-D-ribofuranosyl-6-hydroxylaminopurine. J. Med. Chem., 9: 143–144.PubMedCrossRefGoogle Scholar
  29. Goody, R. S., and Eckstein, F. 1971. Thiophosphate analogs of nucleoside di- and triphosphates. J. Am. Chem. Soc., 93. 6252–6257.CrossRefGoogle Scholar
  30. Gough, G., and Maguire, M. H. 1967. Some biologically active N6-methylated adenosine analogues. J. Med. Chem., 70: 475–478.CrossRefGoogle Scholar
  31. Gough, G., Maguire, M. H., and Penglis, F. 1972. Analogs of adenosine 5’-diphosphate—new platelet aggregators. Molec. Pharmcol., 5: 170–177.Google Scholar
  32. Gough, G. R., Nobbs, D. M., Middleton, J. C., Penglis-Caredes, F., and Maguire, M. H. 1978. New inhibitors of platelet aggregation. 5’-Phosphate, 5’-phosphorothioate, and 5’-O-sulfamyl derivatives of 2-substituted adenosine analogs. J. Med. Chem., 27: 520–525.CrossRefGoogle Scholar
  33. Green, D. P. L., Ravindranathan, T., Reese, C. B., and Saffhill, R. 1970. The synthesis of oligoribonucleotides. VIII. The preparation of ribonucleoside 2’, 5’-bisketals. Tetrahedron, 26: 1031–1041.PubMedCrossRefGoogle Scholar
  34. Griffin, B. E., Jarman, M., Reese, C. B., and Sulston, J. E. 1967. The synthesis of oligoribonucleotides. II. Methoxymethylidene derivatives of ribonucleosides and 5’-ribonucleotides. Tetrahedron, 23: 2301–2313.PubMedCrossRefGoogle Scholar
  35. Guilford, H., Larsson, P.-O., and Mosbach, K. 1972. On adenine nucleotides for affinity chromatography. Chemica Scripta, 2: 165–170.Google Scholar
  36. Haley, B. E., and Hoffman, J. F., 1974. Interactions of a photoaffinity ATP analog with cation- stimulated adenosine triphosphatases of human red cell membranes. Proc. Natl. Acad. Sci. USA, 77: 3367–3371.CrossRefGoogle Scholar
  37. Haley, B., and Yount, R. G. 1972. γ-Fluoroadenosine triphosphate. Synthesis, properties, and interaction with myosin and heavy meromyosin. Biochemistry, 77: 2863–2871.CrossRefGoogle Scholar
  38. Hampton, A. 1961. Nucleotides. II. A new procedure for the conversion of ribonucleosides to 2’, 3’- O-isopropylidene derivatives. J. Am. Chem. Soc., 55: 3140–3145.Google Scholar
  39. Hampton, A., and Chawla, R. R. 1975. Syntheses of the epimeric 5’-C-carboxy derivatives of 2’, 3’- O-isopropylidene adenosine. J. Carbohydr. Nucleos. Nucleot., 2: 281–298.Google Scholar
  40. Harmon, R. E., Zenerosa, C. V., and Gupta, S. K. 1969. Permanganate oxidation of purine nucleosides. Chem. Ind. (.Lond.), 7969: 1141.Google Scholar
  41. Hogenkamp, H. P. 1974. Chemical synthesis and properties of analogs of adenosylcobalamin. Biochemistry, 75: 2736–2740.CrossRefGoogle Scholar
  42. Holmes, R. E., and Robins, R. K. 1964. Purine nucleosides. VII. Direct bromination of adenosine, deoxyadenosine, guanosine, and related purine nucleosides. J. Am. Chem. Soc., 86: 1242–1245.CrossRefGoogle Scholar
  43. Holmes, R. E., and Robins, R. K. 1965. Purine nucleosides. IX. The synthesis of 9-0-D-ribofuranosyl uric acid and other 8-substituted purine ribonucleosides. J. Am. Chem. Soc., 57: 1772–1776.CrossRefGoogle Scholar
  44. Holý, A. 1968. Oligonucleotidic compounds. XXIV. Synthesis of 2’,3’-phosphates of inosine, xanthosine, 6-mercapto-9-(β-D-ribofuranosyl)purine, and 2-amino-6-mercapto-9-(β-D-ribofuranosyl)purine. Collect. Czech. Chem. Commun., 55: 2259–2270.Google Scholar
  45. Holý, A., and Sorm, F. 1969. Oligonucleotidic compounds. XXXIV. Preparation of some β-L-ribon-ucleosides, their 2’ (3’)-phosphates and 2’, 3’-cyclic phosphates. Collect. Czech. Chem. Commun., 54: 3383–3401.CrossRefGoogle Scholar
  46. Hourani, S. M. O. 1984. Desensitization of the guinea-pig urinary bladder by the enantiomers of adenylyl 5’-(β, γ-methylene)diphosphonate and by substance P. Br. J. Pharmacol., 52: 161–164.CrossRefGoogle Scholar
  47. Ikehara, M., and Maruyama, T. 1975. Studies of nucleosides and nucleotides. LXV. Purine cyclo-nucleosides. 26. A versatile method for the synthesis of purine O-cyclo-nucleosides. The first synthesis of 8, 2-anhydro-8-oxy-9-β, D-arabinofuranosylguanosine. Tetrahedron, 57: 1369–1372.CrossRefGoogle Scholar
  48. Ikehara, M., Tada, H., and Muneyama, K. 1965. Nucleosides and nucleotides. XXV. Purine cyclo- nucleosides. 2. Synthesis of 5’-deoxyguanosine via a 5’, 8-cyclonucleoside. Chem. Pharm. Bull. Tokyo, 75: 639–642.CrossRefGoogle Scholar
  49. Ikehara, M., Uesugi, S., and Kaneko, M. 1967. Bromination of adenine nucleoside and nucleotide. J. Chem. Soc. Chem. Commun., 7962: 17–18.Google Scholar
  50. Ikehara, M., Ohtsuka, E., and Uesugi, S. 1973. Nucleosides and nucleotides. LVI. Versatile method for the synthesis of 8-mercaptoadenosine nucleotides. Chem. Pharm. Bull. Tokyo, 27: 444–445.CrossRefGoogle Scholar
  51. Jaffe, E. K., and Cohn, M. 1978. Divalent cation-dependent stereospecificity of adenosine 5’-0-(2- thiotriphosphate) in the hexokinase and pyruvate kinase reactions. The absolute stereochemistry of the diastereoisomers of adenosine 5’-0-(2-thiotriphosphate). J. Biol. Chem., 253: 4823–4825.PubMedGoogle Scholar
  52. Jahn, W. 1965. Synthese 5’-substituierter adenosinderivate. Chem. Ber., 95: 1705–1708.CrossRefGoogle Scholar
  53. Jain, T. C., Jenkins, I. O., Russel, A. F., Verheyden, J. P. H., and Moffatt, J. G. 1974. Reactions of 2-acyloxyisobutyryl halides with nucleosides. IV. A facile synthesis of 2’, 3’–unsaturated nucleosides using chromous acetate. J. Org. Chem., 59: 30–38.CrossRefGoogle Scholar
  54. Johnson, Jr., J. A., Thomas, H. J., and Schaeffer, H. J. 1958. Synthesis of potential anticancer agents. XII. Ribosides of 6-substituted purines. J. Am. Chem. Soc., 50: 699–702.CrossRefGoogle Scholar
  55. Jones, G. H., and Moffatt, J. G. 1968. The synthesis of 6’-deoxyhomonucleoside-6’-phosphonic acids. J. Am. Chem. Soc., 90: 5337–5338.CrossRefGoogle Scholar
  56. Jones, J. W., and Robins, R. W. 1963. Purine nucleosides. III. Methylation studies of certain naturally occurring purine nucleosides. J. Am. Chem. Soc., 85: 193–201.CrossRefGoogle Scholar
  57. Jones, G. H., Hamamura, E. K., and Moffatt, J. G. 1968. A new stable Wittig reagent suitable for the synthesis of a,0-unsaturated phosphonates. Tetrahedron Lett., 7965: 5731–5734.CrossRefGoogle Scholar
  58. Kiburis, J., and Lister, J. H. 1971. Nucleophilic displacement of the trimethylammonio-group as a new route to fluoropurines. J. Chem. Soc., 7977: 3942–3947.Google Scholar
  59. Kikukawa, K., and Ichino, M. 1971. Direct halogenation of the sugar moiety of nucleosides. Tetrahedron Lett., 7977: 87–90.CrossRefGoogle Scholar
  60. Kikugawa, K., Iizuka, K., Higuchi, Y., Hirayama, H., and Ichino, M. 1972. Platelet aggregation inhibitors. 2. Inhibition of platelet aggregation by 5’-, 2-, 6-, and 8-substituted adenosines. J. Med. Chem., 75: 387–390.CrossRefGoogle Scholar
  61. Kikugawa, K., Iizuka, K., and Ichino, M. 1973a. Platelet aggregation inhibitors. 4. N6-Substituted adenosines. J. Med. Chem., 16: 358–364.PubMedCrossRefGoogle Scholar
  62. Kikugawa, K., Suehiro, H., and Ichino, M. 1973b. Platelet aggregation inhibitors. 6. 2-Thioadenosine derivatives. J. Med. Chem., 76: 1381–1388.CrossRefGoogle Scholar
  63. Kikugawa, K., Suehiro, H., and Aoki, A. 1977a. Platelet aggregation inhibitors. X. S-Substituted 2- thioadenosines and their derivatives. Chem. Pharm. Bull. Tokyo, 25: 2624–2637.PubMedCrossRefGoogle Scholar
  64. Kikugawa, K., Suehiro, H., Yanase, R., and Aoki, A. 1977b. Platelet aggregation inhibitors. IX. Chemical transformation of adenosine into 2-thioadenosine derivatives. Chem. Pharm. Bull. Tokyo, 25: 1959–1969.PubMedCrossRefGoogle Scholar
  65. Kobayashi, Y., Kumadaki, I., Ohsawa, A., and Murakami, S. 1976. Synthesis of 2\3’, 5’-tris-0-acetyl- 8-fluoroadenosine. J. Chem. Soc. Chem. Commun., /967: 430–431.Google Scholar
  66. Lindberg, M., Larsson, P.-O., and Mosbach, K. 1973. A new immobilized NAD+ analogue, its applications in affinity chromatography and as a functioning coenzyme. Eur. J. Biochem., 40: 187–193.PubMedCrossRefGoogle Scholar
  67. Londos, C., Cooper, D. M. F., and Wolff, J. 1980. Subclasses of adenosine receptors. Proc. Natl. Acad. Sci. USA, 77: 2551–2554.PubMedCrossRefGoogle Scholar
  68. Long, R. A., Robins, R. K., and Townsend, L. B. 1967. Purine nucleosides. XV. The synthesis of 8-amino- and 8-substituted aminopurine nucleosides. J. Org. Chem., 32: 2151–2156.CrossRefGoogle Scholar
  69. Macfarlane, D. E., Srivastava, P., and Mills, D. C. B. 1983. 2-Methylthioadenosine [(3-32P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets. J. Clin. Invest., 77: 420–428.CrossRefGoogle Scholar
  70. Maguire, M. H., Nobbs, D. M., Einstein, R., and Middleton, J. C. 1971. 2-Alkylthioadenosines, specific coronary vasodilators. J. Med. Chem., 74: 415–420.CrossRefGoogle Scholar
  71. Markiewicz, W. T. 1979. Tetraisopropyldisiloxane-1, 3-diyl, a group for simultaneous protection of 3’- and 5’-hydroxy functions of nucleosides. J. Chem. Res. (S), 1979: 24–25.Google Scholar
  72. McCarthy, J. R., Robins, R. K., and Robins, M. J. 1968. Purine nucleosides. XXII. The synthesis of angustmycin A (Decoyinine) and related unsaturated nucleosides. J. Am. Chem. Soc., 90: 4993–4999.PubMedCrossRefGoogle Scholar
  73. Mengel, R., and Wiedner, H. 1976. Nucleosidtransformationen. 1. Umwandlung von adenosin in 2’- und 3’-azido-, -amino- sowie -chloro-substituierte deoxyadenosine. Chem. Ber., 109: 433–443.CrossRefGoogle Scholar
  74. Meyer, R. B., Shuman, D. A., and Robins, R. K. 1974. A new purine ring closure and the synthesis of 2-substituted derivatives of adenosine cyclic 3\5’-phosphate. J. Am. Chem. Soc. 96: 4962–4966.PubMedCrossRefGoogle Scholar
  75. Meyer, R. B., Stone, T. E., and Heinzel, F. P. 1978. Direct sulfhydrolysis of cyclic AMP: One-step synthesis of the cyclic ribonucleotide of 6-mercaptopurine. J. Heterocycl. Chem., 75: 1511–1512.CrossRefGoogle Scholar
  76. Meyer, W., Bohnke, E., and Follman, H. 1976. Facile preparation of 5’-cyano- and 5-carboxynucleosides. Angew. Chem. Int. Ed. Engl., 75: 499–500.CrossRefGoogle Scholar
  77. Michelson, A. M. 1964. Synthesis of nucleotide anhydrides by anion exchange. Biochim. Biophys. Acta, 97: 1–13.Google Scholar
  78. Montgomery, J. A., and Hewson, K. 1964. The synthesis of 2-bromoadenosine. J. Heterocycl. Chem., 1: 213–214.CrossRefGoogle Scholar
  79. Montgomery, J. A., and Thomas, H. J. 1972. Nucleosides of 2-azapurines and certain ring analogues. J. Med. Chem., 75: 182–187.CrossRefGoogle Scholar
  80. Montgomery, J. A., Johnston, T. P., Gallagher, A., Stringfellow, Jr., C. R., and Schabel, Jr., F. M. 1961. Comparative studies of the anticancer activity of some S-substituted derivatives of 6-mercaptopurine and their ribonucleosides. J. Med. Pharm. Chem., i: 265–288.Google Scholar
  81. Morr, M., 1976, Synthese des 5’-thio-3’-amido-5\3’-didesoxyadenosine-3’-5’-cyclophosphats, ein cAMP-derivat mit S und N im cyclophosphatring. Tetrahedron Lett., 7976: 2127–2128.CrossRefGoogle Scholar
  82. Morr, M., and Ernst, L. 1979. Aminonucleosidin, VIII. 3’-Amino-3’-desoxyadenosine, 3’,5’-diamino- 3’,5’-didesoxyadenosine und N-substituierte derivate. Chem. Ber., 772: 2815–2828.CrossRefGoogle Scholar
  83. Muneyama, K., Bauer, R. J., Shuman, D. A., Robins, R. K., and Simon, L. N. 1971. Chemical synthesis and biological activity of 8-substituted adenosine 3’,5’-cyclic monophosphate derivatives. Biochemistry, 70: 2390–2395.Google Scholar
  84. Murray, A. M., and Atkinson, M. R. 1968. Adenosine 5’-phosphorothioate. A nucleotide analog that is a substrate, competitive inhibitor, or regulator of some enzymes that interact with adenosine 5’-phosphate. Biochemistry, 7: 4023–4029.PubMedCrossRefGoogle Scholar
  85. Myers, T. C., Nakamura, K., and Flesher, J. W. 1963. Phosphonic acid analogs of nucleoside phosphates. I. The synthesis of 5’-adenylyl methylenediphosphonate, a phosphonic acid analog of ATP. J. Am. Chem. Soc., 85: 3292–3295.CrossRefGoogle Scholar
  86. Myers, T. C., Nakamura, K., and Danielzadeh, A. B. 1965. Phosphonic acid analogs of nucleoside phosphates. III. The synthesis of adenosine-5’-methylenediphosphonate, a phosphonic acid analog of adenosine 5’-diphosphate. J. Org. Chem., 50: 1517–1520.CrossRefGoogle Scholar
  87. Nishimura, T., Shimizu, B., and Iwai, 1. 1963. A new synthetic method for nucleosides. Chem. Pharm. Bull. Tokyo, 77: 1470–1477.CrossRefGoogle Scholar
  88. Ott, D. G., Kerr, V. N., Hansbury, E., and Hayes, F. N. 1967. Chemical synthesis of nucleoside triphosphates. Anal. Biochem., 27: 469–472.CrossRefGoogle Scholar
  89. Pfitzner, K. E., and Moffatt, J. G. 1963. The synthesis of nucleoside-5’ aldehydes. J. Am. Chem. Soc., 85: 3027.Google Scholar
  90. Prasad, R. N., Fung, A., Tietje, K., Stein, H. H., and Brondyk, H. B. 1976. Modification of the 5’- position of purine nucleosides. 1. Synthesis and biological properties of alkyl adenosine 5’-car- boxylates. J. Med. Chem., 79: 1180–1186.CrossRefGoogle Scholar
  91. Prasad, R. N., Banana, D. S., Fung, A., Savie, M., Tietje, K., Stein, H. H., Brondyk, H., and Egan, R. S. 1980. Modification of the 5’-position of purine nucleosides. 2. Synthesis and some cardiovascular properties of adenosine-5’-(N-substituted)carboxamides. J. Med. Chem., 25: 313–319.CrossRefGoogle Scholar
  92. Ranganathan, R. 1977. Modification of the 2’-position of purine nucleosides: Syntheses of 2’-a- substituted-2’-deoxyadenosine analogs. Tetrahedron Lett., 7977: 1291–1294.CrossRefGoogle Scholar
  93. Ranganathan, R., and Larwood, D. 1978. Facile conversion of adenosine into new 2’-substituted-2’- deoxy-arabinofuranosyladenine derivatives: Stereospecific syntheses of 2’-azido-2’-deoxy-, 2’- amino-2’-deoxy-, and 2’-mercapto-2’-deoxy-p-D-arabinofuranosyladenines. Tetrahedron Lett., 7975: 4341–4344.CrossRefGoogle Scholar
  94. Ranganathan, R. S., Jones, G. H., and Moffatt, J. G. 1974. Novel analogues of nucleoside 3’, 5’-cyclic phosphates. I. 5’-Mono- and dimethyl analogs of adenosine 3’, 5’-cyclic phosphate. J. Org. Chem., 39: 290–298.PubMedCrossRefGoogle Scholar
  95. Robins, M. J., and Basom, G. L. 1973. Nucleic acid related compounds. 8. Direct conversion of 2’- deoxyinosine to 6-chloropurine 2’-deoxyriboside and selected 6-substituted deoxynucleosides and their evaluation as substrates of adenosine deaminase. Can. J. Chem., 57: 3161–3169.CrossRefGoogle Scholar
  96. Robins, M. J., and Wilson, J. S. 1981. Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2’-deoxynucleosides. J. Am. Chem. Soc. 103: 932–933.CrossRefGoogle Scholar
  97. Robins, M. J., McCarthy, J. R., and Robins, R. K. 1966. Purine nucleosides. XII. The preparation of 2’, 3’-dideoxyadenosine, 2’, 5’-dideoxyadenosine, and 2’,3’,5’-trideoxyadenosine from 2’-deox- yadenosine. Biochemistry, 5: 224–231.PubMedCrossRefGoogle Scholar
  98. Robins, M. J., Fouron, Y., and Mengel, R. 1974. Nucleic acid related compounds. 11. Adenosine 2’, 3’-ribo-epoxide. Synthesis, intramolecular degradation, and transformation into 3’-substituted xylofuranosyl nucleosides and the lyxo-epoxides. J. Org. Chem., 59: 1564–1570.CrossRefGoogle Scholar
  99. Robins, M. J., Mengel, R., Jones, R. A., and Fouron, Y. 1976. Nucleic acid related compounds. 22. Transformation of ribonucleoside 2’, 3’-O-ortho esters into halo, deoxy, and epoxy sugar nucleosides using acyl halides. Mechanism and structure of products. J. Am. Chem. Soc., 95: 8204–8213.CrossRefGoogle Scholar
  100. Rosendahl, M. S., and Leonard, N. J. 1982. (3-7-Peroxy analogs of adenosine and guanosine triphosphate: Synthesis and biological activity. Science, 275: 81–82.CrossRefGoogle Scholar
  101. Russel, A. F., Greenberg, S., and Moffatt, J. G. 1973. Reactions of 2-acyloxyisobutyryl halides with nucleosides. II. Reactions of adenosine. J. Am. Chem. Soc., 95: 4025–4030.CrossRefGoogle Scholar
  102. Satchell, D. G., and Maguire, M. H. 1975. Inhibitory effects of adenine nucleotide analogs on the isolated guinea-pig taenia coli. J. Pharmacol. Exp. Ther., 795: 540–548.Google Scholar
  103. Sato, T., Shimadate, T., and Ishido, Y. 1961. Nucleosides and nucleotides. VII. A new method for syntheses of purine ribonucleosides. 1. Nippon Kagaku Zasshi, 57: 1440–1442.Google Scholar
  104. Schaeffer, H. J., and Thomas, H. J. 1958. Synthesis of potential anticancer agents. XIV. Ribosides of 2, 6-disubstituted purines. J. Am. Chem. Soc., 80: 3788–3742.CrossRefGoogle Scholar
  105. Schmidt, R. R., Schloz, U., and Schwille, D. 1968. Synthese 5’-modifizierter Adenosinderivate. Chem. Ber., 101: 590–594.PubMedCrossRefGoogle Scholar
  106. Shiue, C.-Y., and Chu, S.-H. 1975. A novel synthesis of 6-seleno-substituted nucleosides, nucleotides and cyclic nucleotides. J. Chem. Soc. Chem. Commun., 7975: 319–320.CrossRefGoogle Scholar
  107. Stein, H. H., Somani, P., and Prasad, R. N. 1975. Cardiovascular effects of nucleoside analogs. Ann. N. Y. Acad. Sci., 255: 380–389.PubMedCrossRefGoogle Scholar
  108. Stone, J. V., Singh, R. K., Horak, H., and Barton, P. G. 1976. Sulfhydryl analogues of adenosine diphosphate: Chemical synthesis and activity as platelet-aggregating agents. Can. J. Biochem., 54: 529–533.PubMedCrossRefGoogle Scholar
  109. Townsend, L. B., and Milne, G. H. 1970. Synthesis of the selenium congener of the naturally occurring nucleoside guanosine, 6-selenoguanosine. J. Heterocycl. Chem., 7: 753–754.CrossRefGoogle Scholar
  110. Trayer, I. P., Trayer, H. R., Small, D. A. P., and Bottomley, R. C. 1974. Preparation of adenosine nucleotide derivatives suitable for affinity chromatography. Biochem. J., 139: 609–623.PubMedGoogle Scholar
  111. Vorbriiggen, H., and Bennua, B. 1978. New simplified nucleoside synthesis. Tetrahedron Lett., 1978: 1339–1342.CrossRefGoogle Scholar
  112. Vorbriiggen, H., and Krolikiewicz, K. 1976. C-Substitution of nucleosides with the aid of the Es- chenmoser sulphide contraction. Angew. Chem. Int. Ed. Engl., 15: 689–690.CrossRefGoogle Scholar
  113. Wagner, D., Verheyden, J. P. H., and Moffatt, J. G. 1974. Preparation and synthetic utility of some organotin derivatives of nucleosides. J. Org. Chem., 59: 24–30.CrossRefGoogle Scholar
  114. Wetzel, R., and Eckstein, F. 1975. Synthesis and reactions of 6-methylsulfonyl-9-p-D-ribofuranosyl- purine. J. Org. Chem., 40: 658–660.PubMedCrossRefGoogle Scholar
  115. Wilkes, J. S., Hapke, B., and Letsinger, R. L. 1973. A 5’-amino analog of adenosine diphosphate. Biochem. Biophys. Res. Commun., 55: 917–922.CrossRefGoogle Scholar
  116. Wittman, R. 1963. Die reaktion der phosphosaiiren mit 2, 4-dinitro-fluobenzol, 1. Eine neue synthese von monofluorophosphorsauremonoestern. Chem. Ber., 96: 771–779.Google Scholar
  117. Yang, Y., Hogenkamp, H. P. C., Long, R. A., Revenkar, G. R., and Robins, R. K. 1977. A convenient synthesis of 5’-deoxyribonucleosides. Carbohydrate Res., 59: 449–457.CrossRefGoogle Scholar
  118. Yoshikawa, M., Kata, T., and Takenishi, T. 1967. A novel method for phosphorylation of nucleosides to 5’-nucleotides. Tetrahedron Lett., 1967: 5065–5068.CrossRefGoogle Scholar
  119. Yount, R. G., Babcock, D., Ballantyne, W., and Ojala, D. 1971. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a PNP linkage. Biochemistry, 10: 2484–2489.PubMedCrossRefGoogle Scholar
  120. Zielinski, W. S., and Smrt, J. 1974. Phosphorodianilidates in the synthesis of the deoxyribooligonu- cleotidic chain. Collect. Czech. Chem. Commun., 39: 2483–2490.CrossRefGoogle Scholar
  121. Zemlicka, J., and Sorm, F. 1965. Nucleic acids components and their analogs. LX. The reaction of chloromethylenedimethylammonium chloride with 2’,3’, 5’-tri-O-acetylinosine. A new synthesis of 6-chloro-(9-β-D-ribofuranosyl)purine. Collect. Czech. Chem. Commun., 50: 1880–1889.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Noel J. Cusack
    • 1
  1. 1.Department of PharmacologyKing’s College LondonLondonEngland

Personalised recommendations