The Platelet—Fibrinogen Interaction

  • Joel S. Bennett


Following the observation that adding ADP to platelet-rich plasma resulted in platelet aggregation (Gaarder et al.,1961), it became apparent that factors in plasma were required for this process to proceed (Born and Cross, 1964). Experiments with washed platelets indicated that, at a minimum, calcium and fibrinogen were necessary (Cross, 1964; McLeanet aL, 1964). Similarly, fibrinogen was needed for platelets to adhere to artificial surfaces such as glass (Zucker and Vroman, 1969). The relevance of these in vitroobservations for physiologic platelet function became apparent from the study of individuals with congenital afibrinogenemia. Afibrinogenemic individuals have barely detectable concentrations of plasma fibrinogen and often have a prolonged bleeding time, indicating a concomitant defect in platelet function (Weiss and Rogers, 1971). The platelet defect is secondary to the deficiency of fibrinogen because the abnormal platelet function can be completely corrected by transfusions of fibrinogen. Further observations that platelets from individuals with Glanzmann’s thrombasthenia do not aggregate (Caen, 1972), adhere to glass (Zucker and Vroman, 1969), or adsorb fibrinogen suggest that fibrinogen and the platelet surface undergo a specific interaction (Bang et al,1972). Until recently, an explanation for the fibrinogen requirement for platelet aggregation was not available. However, the demonstration that platelet stimulation exposes a limited number of fibrinogen receptors on the platelet surface provided the key to understanding the role of fibrinogen in platelet function.


Platelet Aggregation Human Platelet Plasma Fibrinogen Platelet Surface Human Fibrinogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bang, N. U., Heidenreich, R. O., and Trygstad, C. W., 1972, Plasma protein requirements for human platelet aggregation, Ann. N.Y. Acad. Sci. 201:280–299.PubMedCrossRefGoogle Scholar
  2. Bennett, J. S., and Vilaire, G., 1979, Exposure of platelet fibrinogen receptors by ADP and epinephrine, J. Clin. Invest. 64:1393–1401.PubMedCrossRefGoogle Scholar
  3. Bennett, J. S., Vilaire, G., and Burch, J. W., 1981, A role for prostaglandins and thromboxanes in the exposure of platelet fibrinogen receptors, J. Clin. Invest. 68:981–987.PubMedCrossRefGoogle Scholar
  4. Bennett, J. S., Vilaire, G., and Cines, D. B., 1982, Identification of the fibrinogen receptor on human platelets by photoaffinity labeling, J. Biol. Chem. 257:8049–8054.PubMedGoogle Scholar
  5. Bennett, J. S., Hoxie, J. A., Leitman, S. F., Vilaire, G., and Cines, D. B., 1983, Inhibition of fibrinogen binding to stimulated human platelets by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A. 80:2417–2421.PubMedCrossRefGoogle Scholar
  6. Boeynaems, J M., and Dumont, J. E., 1977, The two-step model of ligand-receptor interaction, Mol. Cell. Endocrinol. 7:33–47.PubMedCrossRefGoogle Scholar
  7. Born, G. V. R., and Cross, M. J., 1964, Effects of inorganic ions and plasma proteins on the aggregation of blood platelets by adenosine diphosphate, J. Physiol. (London) 170:397–414.Google Scholar
  8. Bowie, E. J. W., and Owen, C. A., Jr., 1974, The bleeding time. Prog. Hemostas. Thrombos. 2:249–271.Google Scholar
  9. Brass, L. F., and Shattil, S. J., 1982, Changes in surface-bound and exchangeable calcium during platelet activation, J. Biol. Chem. 257:14000–14005.PubMedGoogle Scholar
  10. Brass, L. F., and Shattil, S. J., 1983, Identification of the saturable binding sites for Ca2+on the surface of human platelets, Thromb. Haemostasis 50:327.Google Scholar
  11. Brown, R. S., Niewiarowski, S., Stewart, G. J., and Millman, M., 1977, A double-isotope study on incorporation of platelets and red cells into fibrin, J. Lab. Clin. Med. 90:130–140.PubMedGoogle Scholar
  12. Caen, J., 1972, Glanzmann thrombasthenia, Clin. Haematol. 1:383–392.Google Scholar
  13. Castaldi, P. A., and Caen, J., 1965, Platelet fibrinogen, J. Clin. Pathol. 18:579–585.PubMedCrossRefGoogle Scholar
  14. Catt, K. J., and DuFau, M. L., 1977, Peptide hormone receptors, Annu. Rev. Physiol. 39:529–557.PubMedCrossRefGoogle Scholar
  15. Charo, I. F., Feinman, R. D., Detwiler, T. C., Smith, J. B., Ingerman, C. M., and Silver, M. J., 1977, Prostaglandin endoperoxides and thromboxane A2can induce platelet aggregation in the absence of secretion, Nature (London) 269:66–68.CrossRefGoogle Scholar
  16. Coller, B. S., 1979, Asialofibrinogen supports platelet aggregation and adhesion to glass. Blood 53:325- 332.PubMedGoogle Scholar
  17.  Coller, B. S., 1980, Interaction of normal, thrombasthenic, and Bemard-Soulier platelets with immobilized fibrinogen: Defective platelet-fibrinogen interaction in thrombasthenia. Blood 55:169–178.Google Scholar
  18. Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A., 1983, A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and IIIa, J. Clin. Invest. 72:325–338.PubMedCrossRefGoogle Scholar
  19. Crabtree, G. R., and Kant, J. A., 1981, Molecular cloning of cDNA for the α,b and γ, chains of rat fibrinogen, J. Biol. Chem. 256:9718–9723.PubMedGoogle Scholar
  20. Crabtree, G. R., and Kant, J. A., 1982, Coordinate accumulation of the mRNAs for the α,b and γ chains of rat fibrinogen following defibrination, J. Biol. Chem. 257:7277–7279.PubMedGoogle Scholar
  21. Cross, M. J., 1964, Effect of fibrinogen on the aggregation of platelets by adenosine diphosphate, Thrombos. Diathes. Haemorrh. 12:521–527.Google Scholar
  22. DiMinno, G., Thiagarajan, P., Perussia, B., Martinez, J., Shapiro, S., Trinchieri, G., and Murphy, S., 1983, Exposure of platelet fibrinogen-binding sites by collagen, arachidonic acid, and ADP: Inhibition by a monoclonal antibody to the glycoprotein IIb-IIIa complex. Blood 61:140–148.Google Scholar
  23. Doolittle, R. F., 1973, Structural aspects of the fibrinogen to fibrin conversion, Adv. Protein Chem. 27:1–109.PubMedCrossRefGoogle Scholar
  24. Doolittle, R. F., 1981, Fibrinogen and fibrin, in: Haemostasis and Thrombosis(A. L. Bloom, and D. P. Thomas, eds.), Churchill Livingstone, New York, pp. 163–191.Google Scholar
  25. Doolittle, R. F., Takagi, T., and Cottrell, B. A., 1974, Platelet and plasma fibrinogens are identical gene products. Science 185:368–369.PubMedCrossRefGoogle Scholar
  26. Fowler, W. E., and Erickson, H. P., 1979, Trinodular structure of fibrinogen, J. Mol. Biol. 134:241–249.PubMedCrossRefGoogle Scholar
  27. Fowler, W. E., Fretto, L. J., Erickson, H. P., and McKee, P. A., 1980, Electron microscopy of plasmic fragments of human fibrinogen as related to trinodular structure of the intact molecule, J. Clin. Invest. 66:50–56.PubMedCrossRefGoogle Scholar
  28. Fowlkes, D. M., Kant, J. A., Fornace, A. L., and Crabtree, G. R., 1983, Regulation and structure of rat and human fibrinogen genes, Throm. Haemostasis 50:325.Google Scholar
  29. Fujimoto, T., and Hawiger, J., 1982a, Adenosine diphosphate induces binding of von Willebrand factor to human platelets. Nature (London) 297:154–156.CrossRefGoogle Scholar
  30. Fujimoto, T., Ohara, S., and Hawiger, J., 1982b, Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets, J. Clin. Invest. 69:1212–1222.PubMedCrossRefGoogle Scholar
  31. Gaarder, A., Jonsen, J., Laland, S., Hellem, A., and Owren, P. A., 1961, Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets. Nature (London) 192:531–532.CrossRefGoogle Scholar
  32. Ganguly, P., 1972, Isolation and some properties of fibrinogen from human blood platelets, J. Biol. Chem. 247:1809–1816.PubMedGoogle Scholar
  33. Gogstad, G. O., Brosstad, F., Krutnes, M-B., Hägen, I., and Solum, N. O., 1982a, Fibrinogen-binding properties of the human platelet glycoprotein IIb-IIIa complex: A study using crossed-radioim- munoelectrophoresis. Blood 60:663–671.PubMedGoogle Scholar
  34. Gogstad, G. O., Hagen, I., Krutnes, M.-B., and Solum, N. O., 1982b, Dissociation of the glycoprotein IIb- IIIa complex in isolated human platelet membranes, Biochim. Biophys. Acta 689:21–30.PubMedCrossRefGoogle Scholar
  35. Graber, S. E., and Hawiger, J., 1982, Evidence that changes in platelet cyclic AMP levels regulate the fibrinogen receptor on human platelets, J. Biol. Chem. 257:14606–14609.PubMedGoogle Scholar
  36. Harfenist, E. J., Packham, M. A., and Mustard, J. F., 1980a, Reversibility of the association of fibrinogen with rabbit platelets exposed to ADP, Blood 56:189–198.PubMedGoogle Scholar
  37. Harfenist, E. J., Packham, M. A., and Mustard, J. F., 1980b, Identical behavior of fibrinogen and asialofibrinogen in reactions with platelets during ADP-induced aggregation, Throm. Res. 20:353–358.CrossRefGoogle Scholar
  38. Harfenist, E. J., Packham, M. A., Kinlough-Rathbone, R. L., and Mustard, J. F., 1981, Inhibitors of ADP- induced platelet aggregation prevent fibrinogen binding to rabbit platelets and cause rapid deaggrega- tion and dissociation of bound fibrinogen, J. Lab. Clin. Med. 97:680–688.PubMedGoogle Scholar
  39. Hawiger, J., Parkinson, S., and Timmons, S., 1980, Prostacyclin inhibits mobilisation of fibrinogen binding sites on human ADP- and thrombin-treated platelets, Nature (London) 283:195–197.CrossRefGoogle Scholar
  40. Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., and Doolittle, R. F., 1982, γ and α chains of human fibrinogen possess sites reactive with human platelet receptors, Proc. Natl. Acad. Sci. U.S.A. 79:2068–2071.PubMedCrossRefGoogle Scholar
  41. Hoeprich, P. D., and Doolittle, R. F., 1983, Dimeric half-molecules of human fibrinogen are joined through disulfide bonds in an antiparallel orientation. Biochemistry 22:2049–2055.PubMedCrossRefGoogle Scholar
  42. Hoffman, B. B., Mullikin-Kilpatrick, D., and Lefkowitz, R. J., 1980, Heterogeneity of radioligand binding to α-adrenergic receptors, J. Biol. Chem. 255:4645–4652.PubMedGoogle Scholar
  43. Holmsen, H., and Weiss, H. J., 1979, Secretable storage pools in platelets, Annu. Rev. Med. 30:119–134.PubMedCrossRefGoogle Scholar
  44. Holmsen, H., Dangelmaier, C. A., and Holmsen, H-K., 1981, Thrombin-induced platelet responses differ in requirement for receptor occupancy, J. Biol. Chem. 256:9393–9396.PubMedGoogle Scholar
  45. Howard, L., Shulman, S., Sadanandan, S., and Karpatkin, S., 1982, Crossed immunoelectrophoresis of human platelet membranes, J. Biol. Chem. 257:8331–8336.PubMedGoogle Scholar
  46. James, H. L., Ganguly, P., and Jackson, C. W., 1977, Characterization and origin of fibrinogen in blood platelets, Throm. Haemostasis 38:939–954.Google Scholar
  47. Kant, J. A., and Crabtree, G. R., 1983, The rat fibrinogen genes, J. Biol. Chem. 258:4666–4667PubMedGoogle Scholar
  48. Keenan, J. P., 1972, Platelet fibrinogen. I Quantitation using fibrinogen sensitized tanned red cells, Med. Lab. Technol. 29:71–79.PubMedGoogle Scholar
  49. Kloczewiak, M., Timmons, S., and Hawiger, J., 1982, Localization of a site interacting with human platelet receptor on carboxy-terminal segment of human fibrinogen γ-chain, Biochem. Biophys. Res. Commun. 107:181–187.PubMedCrossRefGoogle Scholar
  50. Kloczewiak, M., Timmons, S., and Hawiger, J., 1983, Recognition site for the platelet receptor is present on the 15-residue carboxyl-terminal fragment of the γ-chain of human fibrinogen and is not involved in the fibrin polymerization reaction, Throm. Res. 29:249–255.CrossRefGoogle Scholar
  51. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predetermined specificity. Nature (London) 256:495–497.CrossRefGoogle Scholar
  52. Kornecki, E., Niewiarowski, S., Morinelli, T. A., and Kloczwiak, M., 1981, Effects of chymotrypsin and adenosine diphosphate on the exposure of fibrinogen receptors on normal human and Glanzmann’s thrombasthenic platelets, J. Biol. Chem. 256:5696–5701.PubMedGoogle Scholar
  53. Kornecki, E., Tuszynski, G. P., and Niewiarowski, S., 1983, Inhibition of fibrinogen receptor-mediated platelet aggregation by heterologous anti-human platelet membrane antibody, J. Biol. Chem. 258:9349–9356.PubMedGoogle Scholar
  54. Kunicki, T. J., and Aster, R. H., 1979, Isolation and immunologic characterization of the human platelet alloantigen, PlA1, Mol. Immunol. 16:353–360.PubMedCrossRefGoogle Scholar
  55. Kunicki, T. J., Pidard, D., Rosa, J-P, and Nurden, A. T., 1981, The formation of Ca++-dependent complexes of platelet membrane glycoproteins lIb and IIIa in solution as determined by crossed immunoelectrophoresis. Blood 58:268–278.PubMedGoogle Scholar
  56. Laudano, A. P., and Doolittle, R. F., 1978, Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers, Proc. Natl. Acad. Sci. U.S.A. 75:3085–3089.PubMedCrossRefGoogle Scholar
  57. Laudano, A. P., and Doolittle, R. F., 1980, Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences, Biochemistry19; 1013–1019.PubMedCrossRefGoogle Scholar
  58. Lee, H., Nurden, A. T., Thomaidis, A., and Caen, J. P., 1981, Relationship between fibrinogen binding and the platelet glycoprotein deficiencies in Glanzmann’s thrombasthenia type I and type II, Br. J. Haematol. 48:47–57.PubMedCrossRefGoogle Scholar
  59. Marder, V. J., and Budzynski, A. Z., 1975, Data for defining fibrinogen and its plasmic degradation products, Thrombos. Diathes. Haemorrh. 33:199–207.Google Scholar
  60. Marder, V. J., Shulman, N. R., and Carroll, W. R., 1969, High molecular weight derivatives of human fibrinogen produced by plasmin, J. Biol. Chem. 244:2111–2119.PubMedGoogle Scholar
  61. Marder, V. J., Francis, C. W., and Doolittle, R. F., 1982, Fibrinogen structure and physiology, in: Hemostasis and Thrombosis(R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman, eds.), J. B. Lippincott Co., Philadelphia, pp. 145–163.Google Scholar
  62. Marguerie, G. A., and Plow, E. F., 1981, Interaction of fibrinogen with its platelet receptor: Kinetics and effect of pH and temperature, Biochemistry 20:1074–1080.Google Scholar
  63. Marguerie, G., Chagniel, G., and Suscillon, M., 1977, The binding of calcium to bovine fibrinogen, Biochim. Biophys. Acta 490:94–103.PubMedGoogle Scholar
  64. Marguerie, G. A., Plow, E. F., and Edgington, T. S., 1979, Human platelets possess an inducible and saturable receptor specific for fibrinogen, J. Biol. Chem. 254:5357–5363.PubMedGoogle Scholar
  65. Marguerie, G. A., Edgington, T. S., and Plow, E. F., 1980, Interaction of fibrinogen with its platelet receptor as a part of a multistep reaction in ADP-induced platelet aggregation, J. Biol Chem. 255:154- 161.PubMedGoogle Scholar
  66. Marguerie, G. A., Ardaillou, N., Cherel, G., and Plow, E. F., 1982, The binding of fibrinogen to its platelet receptor, J. Biol Chem. 257:11872–11875.PubMedGoogle Scholar
  67. McEver, R. P., Bennett, E. M., and Martin, M. N., 1983, Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein IIb-IIIa using monoclonal antibodies, J. Biol. Chem. 258:5269–5275.PubMedGoogle Scholar
  68. McLean, J. R., Maxwell, R. E., and Hertler, D., 1964, Fibrinogen and adenosine diphosphate-induced aggregation of platelets, Nature (London) 202:605–606.CrossRefGoogle Scholar
  69. Miller, J. L., Katz, A. J., and Feinstein, M. B., 1975, Plasmin inhibition of thrombin-induced platelet aggregation, Thrombos. Diathes. Haemorrh. 33:286–309.Google Scholar
  70. Molinoff, P. B., Wolfe, B. B., and Weiland, G. A., 1981, Quantitative analysis of drug-receptor interactions: II: Determination of the properties of receptor subtypes, Life Sci. 29:427–443.PubMedCrossRefGoogle Scholar
  71. Morinelli, T. A., Niewiarowski, S., Kornecki, E., Figures, W. R., Watchfogel, Y., and Colman, R. W., 1983, Platelet aggregation and exposure of fibrinogen receptors by prostaglandin endoperoxide analogues, Blood 61:41–49.PubMedGoogle Scholar
  72. Mosesson, M. W., Homandberg, G. A., and Amrani, D. L., 1984, Human platelet fibrinogen gamma chain structure. Blood 63:990–995.PubMedGoogle Scholar
  73. Mustard, J. F., Packham, M. A., Kinlough-Rathbone, R. L., Perry, D. W., and Regoeczi, E., 1978, Fibrinogen and ADP-induced platelet aggregation. Blood 52:453–466.PubMedGoogle Scholar
  74. Mustard, J. F., Kinlough-Rathbone, R. L., Packham, M. A., Perry, D. W., Harfenist, E. J., and Pai, K. R. M., 1979, Comparison of fibrinogen association with normal and thrombasthenic platelets on exposure to ADP and chrmotrypsin. Blood 54:983–987.Google Scholar
  75. Nachman, R. L., and Leung, L. L., 1982, Complex formation of platelet membrane glycoproteins IIb and Ilia with fibrinogen, J. Clin. Invest. 69:263–269.PubMedCrossRefGoogle Scholar
  76. Nachman, R. L., and Marcus, A. J., 1968, Immunological studies of proteins associated with the subcellular fractions of thrombasthenic and afibrinogenaemic platelets, Br. J. Haematol 15:181–189.PubMedCrossRefGoogle Scholar
  77. Nachman, R., Levine, R., and Jaffe, E. A., 1977, Synthesis of Factor VIII antigen by cultured guinea pig megakaryocytes, J. Clin. Invest. 60:914–921.PubMedCrossRefGoogle Scholar
  78. Nachman, R., Levine, R., and Jaffe, E., 1978, Synthesis of actin by cultured guinea pig megakaryocytes, complex formation with fibrin, Biochim. Biophys. Acta 543:91–105.PubMedCrossRefGoogle Scholar
  79. Niewiarowski, S., Regoeczi, E., Stewart, G. J., Senyi, A. F., and Mustard, J. F., 1972, Platelet interaction with polymerizing fibrin, J. Clin. Invest. 51:685–700.PubMedCrossRefGoogle Scholar
  80. Niewiarowski, S., Budzynski, A. Z., and Lipinski, B., 1977, Significance of the intact polypeptide chains of human fibrinogen in ADP-induced platelet aggregation, Blood 49:635–644.PubMedGoogle Scholar
  81. Niewiarowski, S., Levy-Toledano, S., and Caen, J. P., 1981a, Platelet interaction with polymerizing fibrin in Glanzmann’s thrombasthenia, Thrombos. Res. 23:457–463.CrossRefGoogle Scholar
  82. Niewiarowski, S., Budzynski, A. Z., Morinelli, T. A., Budzynski, T. M., and Stewart, G. J., 1981b, Exposure of fibrinogen receptor on human platelets by proteolytic enzymes, J. Biol Chem. 256:917- 925.PubMedGoogle Scholar
  83. Olexa, S., and Budzynski, A. Z., 1980, Evidence for four different polymerization sites involved in human fibrin formation, Proc. Natl Acad. Sci. U.S.A. 77:1374–1378.PubMedCrossRefGoogle Scholar
  84. Pasqua, J. J., and Pizzo, S. U., 1983, The role of ligand-ligand interactions in competition by fibrinogen and fibrin degradation products for fibrinogen binding to human platelets, Biochim. Biophys. Acta 757:282–287.PubMedCrossRefGoogle Scholar
  85. Peerschke, E. I., 1982a, Induction of human platelet fibrinogen receptors by epinephrine in the absence of released ADP, Blood 60:71–77.PubMedGoogle Scholar
  86. Peerschke, E. L, 1982b, Evidence for interaction between platelet fibrinogen receptors, Blood 60:973- 978.PubMedGoogle Scholar
  87. Peerschke, E. I., and Zucker, M. B., 1981, Fibrinogen receptor exposure and aggregation of human platelets produced by ADP and chilling, Blood 57:663–670.PubMedGoogle Scholar
  88. Peerschke, E. I., Grant, R. A., and Zucker, M. B., 1980a, Decreased association of 45calcium with platelets unable to aggregate due to thrombasthenia or prolonged calcium deprivation, Br. J. Haematol 46247-256.PubMedCrossRefGoogle Scholar
  89. Peerschke, E. L, Zucker, M. B., Grant, R. A., Egan, J. J., and Johnson, M. M., 1980b, Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 55:841–847.PubMedGoogle Scholar
  90. Peters, K., and Richards, F. M., 1977, Chemical cross-linking: Reagents and problems in studies of membrane structure, Annu. Rev. Biochem. 46:523–551.PubMedCrossRefGoogle Scholar
  91. Pidard, D., Montgomery, R. R., Bennett, J. S., and Kunicki, T. J., 1983, Interaction of AP-2, a monoclonal antibody specific for the human platelet membrane glycoprotein IIb-IIIa complex, with intact platelets, J. Biol. Chem. 258:12582–12586.PubMedGoogle Scholar
  92. Plow, E. F., and Edgington, T. S., 1975, Unique immunochemical features and intracellular stability of platelet fibrinogen, Thromb. Res. 7:729–742.PubMedCrossRefGoogle Scholar
  93. Plow, E. F., and Marguerie, G. A., 1980a, Participation of ADP in the binding of fibrinogen to thrombin- stimulated platelets. Blood 56:553–555.PubMedGoogle Scholar
  94. Plow, E. F., and Marguerie, G. A., 1980b, Induction of the fibrinogen receptor on human platelets by epinephrine and the combination of epinephrine and ADP, J. Biol. Chem. 255:10971–10977.PubMedGoogle Scholar
  95. Plow, E. F., and Marguerie, G., 1982, Inhibition of fibrinogen binding to human platelets by the tetrapep- tide glycl-L-prolyl-L-arginyl-L-proline, Proc. Natl. Acac. Sci. U.S.A. 79:3711–3715.CrossRefGoogle Scholar
  96. Plow, E. F., Srouji, A. H., Meyer, D., Marguerie, G., and Ginsberg, M. E., 1984, Evidence that three adhesive proteins interact with a common recognition site on activated platelets, J. Biol. Chem. 259:5388–5391.PubMedGoogle Scholar
  97. Price, T. M., Strong, D. D., Rudee, M. L., and Doolittle, R. F., 1981, Shadow-cast electron microscopy of fibrinogen with antibody fragments bound to specific regions, Proc. Natl. Acad. Sci. U.S.A. 78:200- 204.PubMedCrossRefGoogle Scholar
  98. Ruggeri, Z. M., Bader, R., and deMarco, L., 1982, Glanzmann’s thrombasthenia: Deficient binding of von Willebrand factor to thrombin-stimulated platelets, Proc. Natl. Acad. Sci.U.S.A. 79:6038–6041.PubMedCrossRefGoogle Scholar
  99. Shattil, S. J., and Bennett, J. S., 1981, Platelets and their membranes in hemostasis: Physiology and pathophysiology, Ann. Intern. Med. 94:108–118.PubMedGoogle Scholar
  100. Shulman, S., 1953, The size and shape of bovine fibrinogen, studies of sedimentation, diffusion and viscosity, J. Am. Chem. Soc. 75:5846–5852.CrossRefGoogle Scholar
  101. Takagi, T., and Doolittle, R. F., 1975, Amino acid sequence studies on plasmin-derived fragments of human fibrinogen: Amino-terminal sequences of intermediate and terminal fragments. Biochemistry 14:940–946.PubMedCrossRefGoogle Scholar
  102. Tam, S. W., Fenton, II,J. W., and Detwiler, T. C., 1979, Dissociation of thrombin from platelets by hirudin, J. Biol. Chem. 254:8723–8725.PubMedGoogle Scholar
  103. Tangen, O., Berman, H. J., and Marfey, P., 1971, Gel filtration, a new technique for separation of blood platelets from plasma, Thrombos. Diath. Haemorrh. 25:268–278.Google Scholar
  104. Tollefsen, D. M., and Majerus, P. W., 1975, Inhibition of human platelet aggregation by monovalent antifibrinogen antibody fragments, J. Clin. Invest. 55:1259–1268.PubMedCrossRefGoogle Scholar
  105. Tomikawa, M., Iwamoto, M., Soderman, S., and Blomback, B., 1980, Effect of fibrinogen on ADP- induced platelet aggregation, Thrombos. Res. 19:841–855.CrossRefGoogle Scholar
  106. Weisel, J. W., Phillips, Jr., G. N., and Cohen, C., 1981, A model from electron microscopy for the molecular structure of fibrinogen and fibrin. Nature (London) 289:263–267.CrossRefGoogle Scholar
  107. Weiss, H. J., 1975, Platelet physiology and abnormalities of platelet function, N. Engl. J. Med. 293:531- 541, 580–588.CrossRefGoogle Scholar
  108. Weiss, H. J., and Kochwa, S., 1968, Studies of platelet function and proteins in 3 patients with Glanzmann’s thrombasthenia, J. Lab. Clin. Med. 71:153–165.PubMedGoogle Scholar
  109. Weiss, H. J., and Rogers, J., 1971, Fibrinogen and platelets in the primary arrest of bleeding, N. Engl. J. Med. 285:369–374.PubMedCrossRefGoogle Scholar
  110. Zucker, M. B., 1977, Relationship of plasma clotting factors to platelets, in: Topics in Hematology,(S. Seno, F. Takaku, and S. Irino, eds.), Excerpta Medica, Amsterdam-Oxford, pp. 280–282.Google Scholar
  111. Zucker, M. B., and Vroman, L., 1969, Platelet adhesion induced by fibrinogen adsorbed onto glass, Proc. Soc. Exp. Biol. Med. 131:318–320.PubMedGoogle Scholar

Copyright information

© Plenum Press New York and London 1985

Authors and Affiliations

  • Joel S. Bennett
    • 1
  1. 1.Hematology-Oncology Section, Department of MedicineUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations