Structure and Function of Platelet Membrane Glycoproteins as Studied by Crossed Immunoelectrophoresis

  • Inger Hagen
  • Nils Olav Solum


This chapter presents studies of platelet membrane glycoproteins based on crossed immunoelectrophoresis (CIE). Crossed Immunoelectrophoresis has been a critical method in assessing the structure of membrane glycoproteins, their organization within the membrane, their interactions with other intrinsic proteins and external ligands, and their abnormalities in disease states. Such studies with human platelets have provided new insights into membrane glycoprotein structure, function, and organization that were not previously appreciated.


Human Platelet Platelet Membrane Platelet Protein Monospecific Antibody Platelet Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali-Briggs, E. F., Clemetson, K. J., and Jenkins, C. S. P., 1981, Antibodies against platelet membrane glycoproteins. 1. Crossed Immunoelectrophoresis studies with antibodies that inhibit ristocetin-induced platelet aggregation, Br. J. Haematol. 48:319–324.Google Scholar
  2. Axelson, N. H., Kroll, J., and Weeke, B., 1973, A manual of quantitative immunoelectrophoresis, Scand. J. Immunol. 2(suppl l):15–87.Google Scholar
  3. Beese, J., Farr, W., Gruner, E., and Haschen, R. J., 1966, Proteolytische Enzyme in normalen menschlichen Blutplätchen,Klin. Wschr. 44:1049–1053.CrossRefGoogle Scholar
  4. Bemdt, M. C., and Phillips, D. R., 1981, The use of proteolytic probes to identify platelet membrane receptors (abstract), Thromb. Haemostasis 46:75.Google Scholar
  5. Bhakdi, S., Bhakdi-Lehnen, B., and Bjerrum, O. J., 1977, Detection of amphiphilic proteins and peptides in complex mixtures. Charge shift crossed immunoelectrophoresis and two-dimensional charge-shift electrophoresis, Biochim. Biophys. Acta 470:35–44.PubMedCrossRefGoogle Scholar
  6. Bjerrum, O. J., 1978, Crossed hydrophobic interaction immunoelectrophoresis: An analytical method for detection of amphiphilic proteins in crude mixtures and for prediction of the result of hydrophobic interaction chromatography. Anal. Biochem. 90:331–348.PubMedCrossRefGoogle Scholar
  7. Bjerrum, O. J., 1983, Detergent-immunoelectrophoresis. General principles and methodology, in: Elec- troimmunochemical Analysis of Membrane Proteins (O. J. Bjerrum, ed.), Elsevier Science Publisher, Amsterdam, pp. 3–44.Google Scholar
  8. Bjerrum, O. J., and Bog-Hansen, T. C., 1976, The immunochemical approach to the characterization of membrane proteins. Human erythrocyte membrane proteins analysed as a model system, Biochim. Biophys. Acta 455:66–89.PubMedCrossRefGoogle Scholar
  9. Bjerrum, O. J., and Hägen, I., 1983, Biomolecular characterization of membrane antigens, in: Electroim-munochemical Analysis of Membrane Proteins (O. J. Bjerrum, ed.), Elsevier Science Publishers, Amsterdam, pp. 77–116.Google Scholar
  10. Bjerrum, O. J., and Lundahl, P., 1973, Detergent-containing gels for immunological studies of solubilized erythrocyte membrane components, Scand. J. Immunol. 2(suppl. 1): 139–143.CrossRefGoogle Scholar
  11. Bjerrum, O. J., Helle, K. B., and Bock, E., 1979, Immunochemically identical hydrophilic and amphiphilic forms of the bovine adrenomedullary dopamine-ß-hydroxylase, Biochem. J. 181: 231–237.PubMedGoogle Scholar
  12. Bjerrum, O. J., Gerlach, J. H., Bøg-Hansen, T. C., and Hertz, J. B., 1982, Electroimmunochemicalanalysis of amphiphilic proteins and glycolipids stained with Sudan Black-containing detergent micelles. Electrophoresis 3:89–98.CrossRefGoogle Scholar
  13. Bøg-Hansen, T. C., 1983, Affinity electrophoresis of glycoproteins, in: Solid Phase Biochemistry Analytical and Synthetic Aspects (W. H. Scowten, ed.), J. Wiley & Sons, Inc., New York, pp. 223–252.Google Scholar
  14. Bordier, C., 1981, Phase separation of integral membrane proteins in Triton X-114 solution, J. Biol. Chem. 256:1604–1607.PubMedGoogle Scholar
  15. Bom, G. V. R., and Cross, M. J., 1964, Effects of inorganic ions and of plasma proteins on the aggregation of blood platelets by adenosine diphosphate, J. Physiol. (London) 170:397–414.Google Scholar
  16. Brosstad, F., Thorsen, L., Gogstad, G., Sletten, K., and Solum, N. O., 1983, Crossed immunoelectrophoretic studies on the binding of plasmin- and CNBr-mediated fibrin(ogen) fragments to the fibrinogen- platelet receptor (The GP Ilb-IIIa complex) (abstract), Thromb. Haemostasis 50:85.Google Scholar
  17. Clemetson, K. J., Naim, H. J., and Lüscher, E. F., 1981, Relationship between glycocalicin and glycoprotein lb of human platelets, Proc. Natl. Acad. Sei. U.S.A. 78:2712–2716.CrossRefGoogle Scholar
  18. Coller, B. S., 1982, Effects of tertiary amine local anesthetics on von Willebrand factor-dependent platelet function: Alteration of membrane reactivity and degradation of GP lb by a calcium-dependent protease(s), Blood 60:731–743.PubMedGoogle Scholar
  19. George, J. N., Nurden, A. T., and Phillips, D. R., 1984, Molecular defects in interactions of platelets with the vessel wall, N. Engl. J. Med. 311:1084–1096.PubMedCrossRefGoogle Scholar
  20. Gogstad, G. O., and Brosstad, F., 1983, Platelet factor XIII is an active enzyme after solubilization and crossed Immunoelectrophoresis, Thromb. Res. 29:237–241.PubMedCrossRefGoogle Scholar
  21. Gogstad, G. O., Hägen, I., Korsmo, R., and Solum, N. O., 1981, Characterization of the proteins of isolated human platelet a-granules. Evidence for a separate a-granule-pool of the glycoprotein lib and Ilia, Biochim. Biophys. Acta 670:150–162.PubMedGoogle Scholar
  22. Gogstad, G. O., Brosstad, F., ICrutnes, M. B., Hägen, I., and Solum, N. O., 1982a, Fibrinogen-binding properties of the human platelet glycoproetin Ilb-IIIa complex: A study using crossed radio-immu- noelectrophoresis, Blood 60:663–671.PubMedGoogle Scholar
  23. Gogstad, G. O., Hägen, I., Korsmo, R., and Solum, N. O., 1982b, Evidence for release of soluble, but not of membrane-integrated proteins from human platelet a-granules, Biochim. Biophys. Acta 702:81–89.PubMedCrossRefGoogle Scholar
  24. Gogstad, G. O., Hägen, I., Krutnes, M.-B., and Solum, N. O., 1982c, Dissociation of the glycoprotein Ilb- Illa complex in isolated platelet membranes. Dependence of pH and divalent cations,Biochim. Biophys. Acta 689:21–30.CrossRefGoogle Scholar
  25. Gogstad, G. O., Krutnes, M. B., and Solum, N. O., 1983a, Calcium-binding proteins from human platelets. A study using crossed Immunoelectrophoresis and 45Ca2+, Eur. J. Biochem. 133:193–199.CrossRefGoogle Scholar
  26. Gogstad, G. O., Stormorken, H., and Solum, N. O., 1983b, Platelet a2-antiplasmin is located in the platelet-a-granules. Thromb. Res. 31:387–390.CrossRefGoogle Scholar
  27. Gogstad, G. O., Solum, N. O., and Krutnes, M. -B., 1983c, Heparin-binding platelet proteins demonstrated by crossed affinity Immunoelectrophoresis, Brit. J. Haematol. 53:563–573.CrossRefGoogle Scholar
  28. Hagen, I., Bjerrum, O. J., and Solum, N. O., 1979, Characterization of human platelet proteins solubilized with Triton X-100 and examined by crossed Immunoelectrophoresis. Reference patterns of extracts from whole platelets and isolated membranes, Eur. J. Biochem. 99:9–22.PubMedCrossRefGoogle Scholar
  29. Hagen, I., Nurden, A., Bjerrum, O. J., Solum, N. O., and Caen, J. P., 1980, Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann’s thrombasthenia and the Bemard- Soulier syndrome, J. Clin, Invest. 65:722–731.CrossRefGoogle Scholar
  30. Hagen, I., Brosstad, F., Solum, N. O., and Korsmo, R., 1981, Crossed Immunoelectrophoresis using immobilized thrombin in intermediate gel. A method for demonstration of thrombin-binding platelet proteins, J. Lab. Clin. Med. 97:213–220.PubMedGoogle Scholar
  31. Hagen, I., Brosstad, F., Gogstad, G., Solum, N. O., and Korsmo, R., 1982a, Demonstration of variable forms of the platelet factor 4 immunoprecipitate using crossed Immunoelectrophoresis, Thromb. Res. 27:77–82.PubMedCrossRefGoogle Scholar
  32. Hägen, I., Bjerrum, O. J., Gogstad, G., Korsmo, R., and Solum, N. O., 1982b, Involvement of divalent cations in the complex between the platelet glycoproteins lib and Ilia, Biochim. Biophys. Acta 701: 1–6.CrossRefGoogle Scholar
  33. Helenius, A., and Simons, K., 1975, Solubilization of membranes by detergents, Biochim. Biophys. Acta 415:29–79.PubMedGoogle Scholar
  34. Howard, L., Shulman, S., Sandanandan, S., and Karpatkin, S., 1982, Crossed immunoelectrophoresis of human platelet membranes, J. Biol. Chem. 257:8331–8336PubMedGoogle Scholar
  35. Kanaide, H., and Shainoff, J. R., 1975, CrossUnking of fibrinogen and fibrin by fibrin stabilizing factor (factor Xllla), J. Lab. Clin. Med. 85:574–597.PubMedGoogle Scholar
  36. Kunicki, T. J., and Aster, R. H., 1979, Isolation and immunologic characterization of the human platelet alloantigen, PlA1, Mol. Immunol. 16:353–360.PubMedCrossRefGoogle Scholar
  37. Kunicki, T. J., Nurden, A. T., Pidard, D., Russell, N. R., and Caen, J. P., 1981a, Characterization of human platelet glycoprotein antigens giving rise to individual immunoprecipitates in crossed immu- noelectrophoresis, Blood 58:1190–1197.PubMedGoogle Scholar
  38. Kunicki, T., Pidard, D., Rosa, J.-P., and Nurden, A. T., 1981b, The formation of Ca++-dependent complexes of platelet membrane glycoproteins lib and Ilia in solution as determined by crossed Immunoelectrophoresis, Blood 58: 268–278.PubMedGoogle Scholar
  39. Lawler, J. W., Slayter, H. S., and Coligan, J. E., 1978, Isolation and characterization of a high molecular weight glycoprotein from human blood platelets, J. Biol. Chem. 253:8609–8616.PubMedGoogle Scholar
  40. Ly, B., Kierulf, P., and Jakobsen, E., 1974, Stabilization of soluble fibrin/fibrinogen complexes by fibrin stabilizing factor (FSF), Thromb. Res. 4:509–522.PubMedCrossRefGoogle Scholar
  41. Nachman, R. L., and Ferris, B., 1968, Studies on human platelet protease activity, J. Clin. Invest. 47:2530–2540.CrossRefGoogle Scholar
  42. Newman, P. J., Knipp, M. A., and Kahn, R. A., 1982, Extraction and identification of human platelet integral membrane proteins using Triton X-114, Thromb. Res. 27:221–224.PubMedCrossRefGoogle Scholar
  43. Norrild, B., Bjerrum, O. J., and Vestergaard, B. F., 1977, Polypeptide analysis of individual immu-noprecipitates from crossed Immunoelectrophoresis, Anal. Biochem. 81:432–441.PubMedCrossRefGoogle Scholar
  44. Okumura, T., Lombart, C., and Jamieson, G. A., 1976, Platelet glycocalicin. II. Isolation and purification, J. Biol. Chem. 251:5950–5955.PubMedGoogle Scholar
  45. Okumura, T., Hasitz, M., and Jamieson, G. A., 1978, Platelet glycocalicin. Interaction with thrombin and role as thrombin receptor on the platelet surface, J. Biol. Chem. 253:3435–3443.PubMedGoogle Scholar
  46. Phillips, D. R., and Jakabova, M., 1977, Ca+ + -dependent protease in human platelets. Specific cleavage of platelet polypeptides in the presence of added Ca2+, J. Biol Chem. 252:5602–5605.PubMedGoogle Scholar
  47. Phillips, D. R., and Poh Agin, P., 1977, Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis, J. Biol. Chem. 252:2121–2126.PubMedGoogle Scholar
  48. Robinson, N. C., and Tanford, C., 1975, The binding of deoxycholate, Triton X-100, sodium dodecyl sulfate and phosphatidylcholine vesicles to cytochrome b 5 . Biochemistry 14:369–378.Google Scholar
  49. Rosenberg, A., Stracher, A., and Lucas, R. C., 1981, Isolation and characterization of actin and actin-binding protein from human platelets,J. Cell. Biol. 91:201–211.PubMedCrossRefGoogle Scholar
  50. Solum, N. O., Hägen, I., and Peterka, M., 1977, Human platelet glycoproteins. Further evidence that the "GP I band" from whole platelets contains three different polypeptides, Thromb. Res. 10:71–82.PubMedCrossRefGoogle Scholar
  51. Solum, N. O., Hagen, I., Filion-Myklebust, C., and Stabaek, T., 1980a, Platelet glycocalicin. Its membrane association and solubilization in aqueous media, Biochim. Biophys. Acta 597:235–246.PubMedCrossRefGoogle Scholar
  52. Solum, N. O., Hagen, I., and Sletbakk, T., 1980b, Further evidence for glycocalicin being derived from a larger amphiphilic platelet membrane glycoprotein, Thromb Res. 18:773–785.PubMedCrossRefGoogle Scholar
  53. Solum, N. O., Olsen, T., and Gogstad, G., 1983a, GP lb in the Triton-insoluble (cytoskeletal) fraction of platelets (abstract), Thromb. Haemostasis 50:372.Google Scholar
  54. Solum, N. O., Olsen, T. M., Gogstad, G. O., Hägen, I., and Brosstad, F. 1983b, Demonstration of a new glycoprotein Ib-related component in platelet extracts prepared in the presence of leupeptin, Biochim. Biophys. Acta 729:53–61.PubMedCrossRefGoogle Scholar
  55. Thorsen, L. I., Brosstad, F., Gogstad, G., Sletten, K., and Solum, N. O., 1983, Fibrin(ogen) degradation products: Interference with binding of fibrinogen to ADP-stimulated platelets and their aggregation (abstract), Thromb. Haemostasis 50:133 (Abstr.).Google Scholar
  56. Truglia, J. A., and Stracher, A., 1981, Purification and characterization of a calcium dependent sulfhydryl protease from human platelets,Biochem. Biophys. Res. Commun. 100:814–822.PubMedCrossRefGoogle Scholar
  57. White, G. C., 1980, Calcium-dependent proteins in platelets. Response of calcium-activated protease in normal and thrombasthenic platelets to aggregating agents, Biochim. Biophys. Acta 631:130–138.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Inger Hagen
    • 1
  • Nils Olav Solum
    • 1
  1. 1.Research Institute for Internal Medicine, Section on Hemostasis and Thrombosis, RikshospitaletUniversity of OsloOslo 1Norway

Personalised recommendations