Organization of Glycoproteins within the Platelet Plasma Membrane

  • Thomas J. Kunicki


Many processes within the eukaryotic cell membrane require the formation of functional macromolecular complexes from individual membrane or cytoplasmic proteins. In light of accumulating evidence that specific membrane glycoproteins function as receptors in critical stages of the platelet adhesion and aggregation mechanisms, there is currently much interest in the organization of proteins within the human platelet membrane and the changes that occur in this organization during platelet function. Within the last ten years, analytical methods such as sodium dodecyl sulfate-poly-acrylamide gel electrophoresis (SDS-PAGE) in one or two dimensions (Phillips and Poh Agin, 1977a) and combined isoelectric focusing-SDS/PAGE (Clemetson et al., 1979) have proved to be extremely valuable for the resolution, identification, and characterization of membrane glycoproteins (see Chapter 3). Thus, Phillips and Poh Agin (1977a) were able to establish molecular criteria for the identification of seven “major” membrane glycoproteins based on their differential mobilities in the presence or absence of disulfide bond reduction. When such analytical methods were used to compare platelet proteins from normal individuals and patients with inherited abnormalities of platelet function, the link between certain membrane glycoproteins and selected platelet functions was established. For example, Glanzmann’s thrombasthenia, which is characterized by defective platelet cohesion, is associated with the absence of or a qualitative defect in glycoproteins (GP) lib and Ilia (Nurden and Caen, 1974; Phillips and Poh Agin, 1977b; Lightsey et al, 1981).


Human Platelet Platelet Membrane Platelet Lysate Fibrinogen Binding Platelet Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, J. S., and Vilaire, G., 1979, Exposure of platelet fibrinogen receptors by ADP and epinephrine, J. Clin. Invest. 64: 1393–1401.PubMedCrossRefGoogle Scholar
  2. Bernett, J. S., Vilaire, G., and Cines, D. B., 1982, Identification of the fibrinogen receptor on human I platelets by photoaffinity labelling, J. Biol. Chem. 257: 8049–8054.Google Scholar
  3. Bernett, J. S., Hoxie, J. A., Leitman, S. F., Vilaire, G., and Cines, D. B., 1983, Inhibition of fibrinogen, binding to stimulated human platelets by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A. 80:2417–2421.CrossRefGoogle Scholar
  4. Berndt, M. C., and Phillips, D. R., 1981, The use of proteolytic probes to identify platelet membrane receptors, (abstract), Thromb. Haemostasis 46:75.Google Scholar
  5. Berndt, M. C., Gregory, C., Chong, B. H., Zola, H., and Castaldi, P. A., 1983a, Additional glycoprotein defects in Bemard-Soulier syndrome: Confirmation of genetic basis by parental analysis. Blood 62:800–807.PubMedGoogle Scholar
  6. Berndt, M. C., Gregory, C., Castaldi, P. A., and Zola, H., 1983b, Purification of human platelet membrane glycoprotein lb complex using a monoclonal antibody (abstract), Thromb. Haemostasis 50:361.Google Scholar
  7. Clemetson, K. J., Capitanio, A., and Luscher, E. F., 1979, High resolution two-dimensional gel electrophoresis of the proteins and glycoproteins of human blood platelets and platelet membranes. Biochim. Biophys. Acta 553:11–24.PubMedCrossRefGoogle Scholar
  8. Clemetson, K. J., Naim, H. Y., and Luscher, E. F., 1981, Relationship between glycocalicin and glycoprotein lb of human platelets, Proc. Natl. Acad. Sci. U.S.A. 78:2712–2716.PubMedCrossRefGoogle Scholar
  9. Clemetson, K. J., McGregory, J. L., James, E., Dechavanne, M., and Luscher, E. F., 1982, Characterization of the platelet membrane glycoprotein abnormalities in Bemard-Soulier syndrome and comparison with normal by surface-labeling techniques and high-resolution two-dimensional gel electrophoresis, J. Clin. Invest. 70:304–311.PubMedCrossRefGoogle Scholar
  10. Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A., 1983a, A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins lib and/or Ilia, J. Clin. Invest. 72:325–338.PubMedCrossRefGoogle Scholar
  11. Coller, B. S., Peerschke, E. I., Scudder, L. E., and Sullivan, C. A., 1983b, Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: Additional evidence in support of GP lb as a platelet receptor for von Willebrand factor, Blood 61:99–110.PubMedGoogle Scholar
  12. Davies, G. E., and Palek, J., 1982, Platelet protein organization: Analysis by treatment with membrane- permeable cross-linking reagents. Blood 59:502–513.PubMedGoogle Scholar
  13. DiMinno, G., Thiagarajan, P., Pemssia, B., Martinez, J., Shapiro, S., Trinchieri, G., and Murphy, S., 1983, Exposure of platelet fibrinogen-binding sites by collagen, arachidonic acid, and ADP: Inhibition by a monoclonal antibody to the glycoprotein Ilb-IIIa complex, Blood 61:140–148.Google Scholar
  14. Gogstad, G. O., Brosstad, F., Kmtnes, M.-B., Hägen, I., and Solum, N. O., 1982, Fibrinogen-binding properties of the human platelet glycoproteins Ilb-IIIa complex: A study using crossed-radioim- munoelectrophoresis. Blood 60:663–671.PubMedGoogle Scholar
  15. Hagen, I., Bjermm, O. J., and Solum, N. O., 1979, Characterization of human platelet proteins solubilizedr with Triton X-100 and examined by crossed immunoelectrophoresis: Reference patterns of extracts from whole platelets and isolated membranes, Eur. J. Biochem. 99:9–22.PubMedCrossRefGoogle Scholar
  16. Hagen, I., Nurden, A., Bjerrum, O. J., Solum, N. O., and Caen, J., 1980, Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann’s thrombasthenia and Bemard-Soulier syndrome, J. Clin. Invest. 65:722–731.PubMedCrossRefGoogle Scholar
  17. Hagen, I., Bjerrum, O. J., Gogstad, G., Korsmo, R., and Solum, N. O., 1982, Involvement of divalent cations in the complex between the platelet glycoproteins lib and Ilia, Biochim. Biophys. Acta 701:1–9.CrossRefGoogle Scholar
  18. Howard, L., Shulman, S., Sadanandan, S., and Karpatkin, S., 1982Google Scholar
  19. Crossed immunoelectrophoresis of human platelet membranes. The major antigen consists of a complex of glycoproteins GP lib and GP; Ilia, held together by Ca+ + and missing in Glanzmann’s thrombasthenia, J. Biol. Chem. 257:8331–8336.Google Scholar
  20. Jennings, L. K., and Phillips, D. R., 1982, Purification of glycoproteins lib and III from human platelet plasma membranes and characterization of a calcium-dependent glycoprotein Ilb-III complex, J. Biol. Chem. 257:10458–10466.PubMedGoogle Scholar
  21. Kunicki, T. J., Pidard, D., Rosa, J.-P., and Nurden, A. T., 1981a, The formation of Ca++-dependent complexes of platelet membrane glycoproteins lib and Ilia in solution as determined by crossed immunoelectrophoresis, Blood 58:268–278.PubMedGoogle Scholar
  22. Kunicki, T. J., Russell, N., Nurden, A. T., Aster, R. H., Caen, J. P., 1981b, Further studies of the human platelets receptor for quinine- and quninidine-dependent antibodies, J. Immunol. 126:398–402.PubMedGoogle Scholar
  23. Kunicki, T. J., Nurden, A. T., Pidard, D., Russell, N. R., and Caen, J. P., 1981c, Characterization of human platelet glycoprotein antigens giving rise to individual immunoprecipitates in crossed-immu-oelectrophoresis. Blood 58:1190–1197.PubMedGoogle Scholar
  24. Lawler, J. W., Slayter, H. S., and Coligan, J. E., 1978, Isolation and characterization of a high molecular weight glycoprotein from human blood platelets, J. Biol. Chem. 253:8609–8616.PubMedGoogle Scholar
  25. Lee, H., Nurden, A., Thomaidis, A., and Caen, J. P., 1981, Relationship between fibrinogen binding and I the platelet glycoprotein deficiencies in Glanzmann’s thrombasthenia Type I and II, Br. J. Haematol. 48:47–55.PubMedCrossRefGoogle Scholar
  26. Leung, L. L. K., Kinoshita, T., and Nachman, R. L., 1981, Isolation, purification, and partial characterization of platelet membrane glycoproteins lib and Ilia, J. Biol. Chem. 256:1994–1997.PubMedGoogle Scholar
  27. Lightsey, A. L., Thomas W. J., Plow, E. P., McMillan, R., and Ginsberg, M., 1981, Glanzmann’s thrombasthenia in the absence of glycoprotein lib and III deficiency (abstract), Blood 58:199.Google Scholar
  28. McEver, R. P., Baenziger, N. L., and Majerus, P. W., 1980, Isolation and quantitation of the platelet membrane glycoprotein deficient in thrombasthenia using a monoclonal hybridoma antibody, J. Clin. Invest. 66:1311–1318.PubMedCrossRefGoogle Scholar
  29. McEver, R. P., Baenziger, J. U., and Majerus, P. W., 1982, Isolation and structural characterization of the polypeptide subunits of membrane glycoprotein Ilb-IIIa from human platelets, Blood 59:80–85.PubMedGoogle Scholar
  30. McEver, R. P., Bennett, E. M., and Martin, M. N., 1983, Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein Ilb-IIIa using monoclonal antibodies, J. Biol. Chem. 258:5269–5275.PubMedGoogle Scholar
  31. Montgomery, R. R., and Johnson, J., 1982, Specific factor VIII-related antigen fragmentation: An in vivo and in vitro phenomenon, Blood 60:930–939.PubMedGoogle Scholar
  32. Montgomery, R. R., Kunicki, T. J., Taves, C., Pidard, D., and Corcoran, M., 1983, Diagnosis of Bemard- Soulier syndrome and Glanzmann’s thrombasthenia with a monoclonal assay on whole blood, J. Clin. Invest. 71:385–389.PubMedCrossRefGoogle Scholar
  33. Mustard, J. F., Kinlough-Rathbone, R. L., Packham, M. A., Perry, D. W., Harfenist, E. J., and Pai, K. R. M., 1979, Comparison of fibrinogen association with normal and thrombasthenic platelets on exposure to ADP or chymotrypsin, Blood 54:987–993.PubMedGoogle Scholar
  34. Nachman, R. L., and Leung, L. L. K., 1982, Complex formation of platelet membrane glycoproteins lib and ffla with fibrinogen, J. Clin. Invest. 69:263–269.PubMedCrossRefGoogle Scholar
  35. Nachman, R. L., Tarasov, E., Weksler, B. B., and Ferris, B., 1977, Wheat germ agglutinin affinity chromatography of human platelet membrane glycoproteins, Thromb. Res. 12:91–104.CrossRefGoogle Scholar
  36. Nachman, R. L., Kinoshita, T., and Ferris, B., 1979, Structural analysis of human platelet membrane glycoprotein I complex, Proc. Natl. Acad. Sci. U.S.A. 76:2952–2954.PubMedCrossRefGoogle Scholar
  37. Nurden, A. T., and Caen, J. P., 1974, An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia, Br. J. Haematol. 28:253–260.PubMedCrossRefGoogle Scholar
  38. Nurden, A. T., and Caen, J. P., 1975, Specific roles for surface glycoproteins in platelet function, Nature (London) 255:720–722.CrossRefGoogle Scholar
  39. Nurden, A. T., Dupuis, D., Kunicki, T. J., and Caen, J. P., 1981, Analysis of the glycoprotein and protein composition of Bemard-Soulier platelets by single and two-dimensional sodium dodecyl sulfate-poly- acrylamide gel electrophoresis, J. Clin. Invest. 67:1431–1440.PubMedCrossRefGoogle Scholar
  40. Okumura, T., Hasitz, M., and Jamieson, G. A., 1978, Platelet glycocalicin: Interaction with thrombin and role as thrombin receptor of the platelet surface, J. Biol. Chem. 253:3435–3443.PubMedGoogle Scholar
  41. Phillips, D. R., and Poh Agin, P., 1977a, Platelet membrane glycoproteins: Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis, J. Biol. Chem. 252:2121–2126.PubMedGoogle Scholar
  42. Phillips, D. R., and Poh Agin, P., 1977b, Platelet membrane defects in Glanzmann’s thrombasthenia: Evidence for decreased amounts of two major glycoproteins, J. Clin. Invest. 60:535–545.PubMedCrossRefGoogle Scholar
  43. Pidard, D., Rosa, J.-P., Kunicki, T. J., and Nurden, A. T., 1982, Further studies on the interaction between human platelet membrane glycoproteins lib and Ilia in Triton X-100, Blood 60:894–904.PubMedGoogle Scholar
  44. Pidard, D., Montgomery, R. R., Bennett, J. S., and Kunicki, T. J., 1983, Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein Ilb-IIIa complex, with intact platelets, J. Biol. Chem. 258: SGoogle Scholar
  45. Polley, M. J., Leung, L. L. K., Clark, F. Y., and Nachman, R. L., 1981, Thrombin-induced platelet membrane glycoprotein lib and Ilia complex formation: An electron microscope study, J. Exp. Med. 154:1058–1068.PubMedCrossRefGoogle Scholar
  46. Rosa, J.-P., Kieffer, N., Didry, D., Pidard, D., Kunicki, T. J., and Nurden, A. T., 1984, The human platelet membrane glycoprotein complex GP Ilb-IIIa expresses antigenic sites not exposed on the dissociated glycoproteins. Blood 64:1246–1253.PubMedGoogle Scholar
  47. Ruggeri, Z. M., and Zimmerman, T. S., 1981, The complex multimeric composition of Factor VIII/von |Willebrand factor, Blood 57:1140–1143.PubMedGoogle Scholar
  48. Shulman, S., and Karpatkin, S., 1980, Crossed Immunoelectrophoresis of human platelet membranes. Diminished major antigen in Glanzmann’s thrombasthenia and Bemard-Soulier syndrome, J. Biol. Chem. 255:4320–4327.PubMedGoogle Scholar
  49. Solum, N. O., Hägen, I., and Peterka, M., 1977, Human platelet glycoproteins: Further evidence that the “GP I band” from whole platelets contains three different polypeptides, one of which may be involved in the interaction between platelets and Factor VIII, Thromb. Res. 10:71–82.PubMedCrossRefGoogle Scholar
  50. Solum, N. O., Hagen, I., Filion-Myklebust, C., and Stabaek, T., 1980a, Platelet glycocalicin: Its membrane association and solubilisation in aqueous media, Biochim. Biophys. Acta 597:235–246.CrossRefGoogle Scholar
  51. Solum, N. O., Hägen, I., and Sletbakk, T., 1980b, Further evidence for glycocalicin being derived from a larger amphiphilic platelet membrane glycoprotein, Thromb. Res. 18:773–785.PubMedCrossRefGoogle Scholar
  52. Solum, N. O., Olsen, T. M., Gogstad, G. O., Hägen, I., and Brosstad, F., 1983, Demonstration of a new, glycoprotein Ib-related component in platelet extracts prepared in the presence of leupeptin, Biochim. Biophys. Acta 729:53–61.PubMedCrossRefGoogle Scholar
  53. Yoshida, N., Weksler, B., and Nachman, R., 1983, Purification of human platelet calcium-activated protease: Effect on platelet and endothelial function, J. Biol. Chem. 258:7168–7174.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Thomas J. Kunicki
    • 1
  1. 1.The Blood Center of Southeastern Wisconsin, IncMilwaukeeUSA

Personalised recommendations