The Mechanism of Clot Retraction

  • Isaac Cohen


Nearly 2000 years elapsed between the first observation of blood clotting by Aristotle and that of Hewson (1772) on the subsequent retraction of the spontaneously formed blood clot. The recognition of the crucial role of platelets in the phenomenon of clot retraction had to await the promotion of platelets from the undignified status of being derived from red cells or chyle (Donné, 1842) to that of a glorified element with its own megakaryocytic parenthood (Wright, 1906). The early observation that clots formed by the blood of severely thrombocytopenic subjects or prepared from platelet-poor plasma of normal subjects do not retract, whereas clots containing normal platelets retract drastically to about 10% of their original volume, leaves little doubt as to the role of platelets in clot retraction. The first monograph on clot retraction published by Budtz-Olsen three decades ago (1951) still represents an excellent document on this subject and there have been several more recent reviews (Cohen and Lüscher, 1975; Behnke, 1976; Pollard et a., 1977; Cohen, 1982).


Actin Filament Human Platelet Contractile Force Platelet Membrane Platelet Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B. W., Murthy, P., and Seguin, E. B., 1983, Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol biphosphate in human platelets, J. Biol. Chem. 258:2076–2078.PubMedGoogle Scholar
  2. Allen, R. D., Zacharski, L. R., Widirstky, S. T., Rosenstein, R., Zaitlin, L. M., and Burgess, D. R., 1979, Transformation and motility of human platelets, J. Cell Biol. 83:126–142.PubMedCrossRefGoogle Scholar
  3. Behnke, O., 1976, The blood platelet, a potential smooth muscle cell, in: Contractile Systems in Non-Muscle Tissue (S. V. Perry, ed.), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 105–115.Google Scholar
  4. Behnke, O., Kristensen, B. L, and Engdahl-Nielsen, L., 1971, Electron microscopical identification of platelet contractile proteins, in:Platelet Aggregation (J. Caen, ed.), Masson, Paris, pp. 3–13.Google Scholar
  5. Bennett, J. S., Vilaire, G., Colman, R. F., and Colman, R. W., 1981, Localization of human platelet membrane-associated actomyosin using the affinity label 5’ -p-fluorosuIfonylbenzoyl adenosine, J. Biol. Chem. 256:1185–1190.PubMedGoogle Scholar
  6. Bettex-Galland, M., and Lüscher, E. F., 1959, Extraction of an actomyosin-like protein from human thrombocytes. Nature (London) 184:276–277.CrossRefGoogle Scholar
  7. Blikstad, I., Eriksson, S., and Carlsson, L., 1980, α-Actinin promotes polymerization of actin from profilactin,Eur. J. Biochem. 109:317–323.PubMedCrossRefGoogle Scholar
  8. Blombäck, B., 1958, Studies on the action of thrombin enzymes on bovine fibrinogen as measured by N-terminal analysis, Arkh. Kemi 12:321–325.Google Scholar
  9. Bottecchia, D., and Fantin, G., 1973, Platelets and clot retraction—effect of divalent cations and several drugs, Thromb. Diath. Haemorrh. 30: 567–576.PubMedGoogle Scholar
  10. Bouvier, C. A., Gabbiani, G., Ryan, G. B., Badonnel, M. C., Majno, G., and Lüscher, E. F., 1977, Binding of anti-actin autoantibodies to platelets, Thromb. Haemostasis 37:321–328.Google Scholar
  11. Brenner, S. L., and Kom, E. D., 1979, Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill, J. Biol. Chem. 254:9982–9985.PubMedGoogle Scholar
  12. Brenner, S. L., and Kom, E. D., 1980, Spectrin/actin complex isolated from sheep erythrocytes accelerates actin polymerization by simple nucleation, J. Biol. Chem. 255:1670–1676.PubMedGoogle Scholar
  13. Brown, S.S., and Spudich, J. A., 1981, Mechanism of action of cytochalasin: Evidence that it binds to actin filament ends, J. Cell Biol. 88:487–491.PubMedCrossRefGoogle Scholar
  14. Budtz-Olsen, O. E. (ed.), 1951, Clot Retraction, Thomas, Springfield, Ill.Google Scholar
  15. Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin-binding protein during platelet activation. Blood 59:466–471.PubMedGoogle Scholar
  16. Carroll, R. C., Gerrard, J. M., and Gilliam, J. M., 1981, Clot retraction facilitates clot lysis. Blood 57:44–48.PubMedGoogle Scholar
  17. Chao, F. C., Shepro, D., Tullis, J. L., Belamarich, F. A., and Curby, W. A., 1976, Similarities between platelet contraction and cellular motility during mitosis: Role of platelet microtubules in clot retraction, J. Cell Sci. 20:569–588.PubMedGoogle Scholar
  18. Cohen, I., 1982, Contractile platelet proteins, in: Hemostasis and Thrombosis—Basic Principles and Clinical Practice (R. W. Colman, J. Hirsh, V. J. Marder, and E. W. Salzman, eds.), J. B. Lippincott Company, Philadelphia and Toronto, pp. 459–471.Google Scholar
  19. Cohen, L, and Cohen, C., 1972, A tropomyosin-like protein from human platelets, J. Mol. Biol. 68:383–387.PubMedCrossRefGoogle Scholar
  20. Cohen, I., and de Vries, A., 1973, Platelet contractile regulation in an isometric system. Nature (London) 246:36–37.CrossRefGoogle Scholar
  21. Cohen, I., and Lüscher, E. F., 1975, The blood platelet contractile system, Haemostasis 4:125–243.Google Scholar
  22. Cohen, I., Kaminski, E., and de Vries, A., 1973, Actin-linked regulation of the human platelet contractile system, Febs Lett. 34:315–317.PubMedCrossRefGoogle Scholar
  23. Cohen, I., Gabbay, J., Glaser, T., and Oplatka, A., 1975, Fibrin-blood platelet interaction in a contracting clot, Br. J. Haematol. 31:45–50.PubMedCrossRefGoogle Scholar
  24. Cohen, I., Gerrard, J. M., Bergman, R. N., and White, J. G., 1979, The role of contractile filaments in platelet activation, in: Protides of the Biological Fluids (H. Peeters, ed.), Pergamon Press, Oxford and New York, pp. 555–566.Google Scholar
  25. Cohen, I., Gerrard, J. M., and White, J. G., 1982, Ultrastructure of clots during isometric contraction, J. Cell Biol. 93:775–787.PubMedCrossRefGoogle Scholar
  26. Collier, N. C., and Wang, K., 1982, Human platelet P235: A high Mr protein which restricts the length of actin filaments, Febs Lett. 143:205–210.PubMedCrossRefGoogle Scholar
  27. Daniel, J. L., Molish, I. R., and Helmsen, H., 1981, Myosin phosphorylation in intact platelets, J. Biol. Chem. 256:7510–7514.PubMedGoogle Scholar
  28. de Gaetano, G., Donati, M. B., Vermylen, J., and Verstraete, M., 1971, Inhibition of clot retraction by previous in vitro platelet aggregation, Thromb. Diath. Haemorrh. 26:449–454.PubMedGoogle Scholar
  29. de Gaetano, G., Bottecchia, D., and Vermylen, J., 1973, Retraction of Reptilase-clots in the presence of agents inducing or inhibiting the platelet adhesion-aggregation reaction, Thromb. Res. 2:71–84.CrossRefGoogle Scholar
  30. de Gaetano, G., Franco, R., Donati, M. B., Bonaccorsi, A., and Garratini, S., 1974, Mechanical recording of Reptilase clot retraction—effect of adenosine-5’-diphosphate and prostaglandin E1, Thromb. Res. 4:189–192.PubMedCrossRefGoogle Scholar
  31. de Gaetano, G., Bertele, V., Cerletti, C., and Di Minno, G., 1982, Prostaglandin effects on platelets, in: Prostaglandins in Clinical Medicine—Cardiovascular and Thrombotic Disorders (K. K. Wu and E. C. Rossi, eds.). Year Book Medical Publishers, Chicago, London, pp. 49–74.Google Scholar
  32. Didisheim, P., and Bunting, D., 1966, Abnormal platelet function in myelofibrosis. Am. J. Clin. Pathol. 45:566–573.PubMedGoogle Scholar
  33. Donne, M. A., 1842, De I’origine des globules du sang, de leur mode de formation et de leur fin, C.R. Seances Acad. Sci. 14:366–368.Google Scholar
  34. Fox, J. E. B., and Phillips, D. R., 1981, Inhibition of actin polymerization in blood platelets by cytochala-sins. Nature (London) 292:650–652.CrossRefGoogle Scholar
  35. Fox, J. E. B., and Phillips, D. R., 1982, Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of myosin with the cytoskeletal structures of human platelets, J. Biol. Chem. 257:4120–4126.PubMedGoogle Scholar
  36. Fujiwara, K., and Pollard, T. D., 1976, Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells, J. Cell Biol. 71:848–875.PubMedCrossRefGoogle Scholar
  37. Gabbiani, G., Ryan, G. B., Lamelin, J. P., Vassah, P., Majno, G., Bouvier, C. A., Cruchaud, A., and Lüscher, E. F., 1973, Human smooth antibody. Its identification as antiactin antibody and a study of its binding to nonmuscular cells, Am. J. Pathol. 72:473–484.PubMedGoogle Scholar
  38. George, J. N., Lyons, R. M., and Morgan, R. K., 1980, Membranes changes associated with platelet activation. Exposure of actin on the platelet surface after thrombin-induced secretion, J. Clin. Invest. 66:1–9.PubMedCrossRefGoogle Scholar
  39. Glover, C. J., Mclntire, L. V., Brown III C. H., and Natelson, E. A., 1975, Dynamic coagulation studies: Influence of normal and abnormal platelets on clot structure formation, Thromb. Res. 7:185–198.PubMedCrossRefGoogle Scholar
  40. Grumet, M., and Lin, S., 1980a, Reversal of profilin inhibition of actin polymerizationin vitro by erythrocyte cytochalasin-binding complexes and cross-linked actin nuclei, Biochem. Biophys. Res. Commun. 92:1324–1334.CrossRefGoogle Scholar
  41. Grumet, M., and Lin, S., 1980b, A platelet inhibitor protein with cytochalasin-like activity against actin polymerization in vitro, Cell 21:439–444.Google Scholar
  42. Harris, H. E., and Weeds, A. G., 1978, Platelet actin: Subcellular distribution and association with profilin, Febs Lett. 90:84–88.PubMedCrossRefGoogle Scholar
  43. Hartwig, J. H., Tyler, J., and Stossel, T. P., 1980, Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments, J. Cell Biol. 87:841–848.PubMedCrossRefGoogle Scholar
  44. Hewson, W. (ed.). Mil, Experimental Inquiry into the Properties of Blood, Cadell, London.Google Scholar
  45. Hinsen, H., d’Haese, J., Small, J. V., and Sobieszek, A., 1978, Mode of filament assembly of myosins from muscle and nonmuscle cells, J. Ultrastruct. Res. 64:282–302.CrossRefGoogle Scholar
  46. Huxley, H. E., 1963, Electron microscope studies of natural and synthetic protein filaments from striated muscle, J. Mol. Biol. 7:281–308.CrossRefGoogle Scholar
  47. Jen, C. J., and Mclntire, L. V., 1982, The structural properties and contractile force of a clot, Cell Motil. 2:445–455.PubMedCrossRefGoogle Scholar
  48. Käser-Glanzmann, R., Jakäbovä, M., George, J. N., and Liischer, E. F., 1977, Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3’, 5’-cyclic nonaphosphate and protein kinase, Biochim. Biophys. Acta 466:429–440.PubMedCrossRefGoogle Scholar
  49. Käser-Glanzmann, R., Jakäbovä, M., George, J. N., and Liischer, E. F., 1978, Further characterization of calcium-accumulating vesicles from human blood platelets, Biochim. Biophys. Acta 512:1–12.PubMedCrossRefGoogle Scholar
  50. Käser-Glanzmann, R., Gerber, E., and Liischer, E. F., 1979, Regulation of the intracellular calcium level in human blood platelets: Cyclic adenosine 3’, 5’-monophosphate dependent phosphorylation of a 22,000 dalton component in isolated Ca++-accumulating vesicles, Biochim. Biophys. Acta 55S: 344–347.Google Scholar
  51. Kirkpatrick, J. P., Mclntire, L. V., Moake, J. L., and Peterson, D. M., 1980, Metabolic requirements of contractile force generation in platelet-rich plasma—a rheological study, Biorrheology 17:411–418.Google Scholar
  52. Kuntamukkula, M. S., Mclntire, L. V., Moake, J. L., Peterson, D. M., and Thompson, W. J., 1978, Rheological studies of the contractile force within platelet-fibrin clots: Effects of prostaglandin E1, dibutyryl cAMP and dibutyrly cGMP, Thromb. Res. 13:957–969.PubMedCrossRefGoogle Scholar
  53. Kuntamukkula, M. S., Moake, J. L., Mclntire, L. V., and Cimo, P. L., 1982, Effects of colchicine and vinblastine on platelet contractility and release, Thromb. Res. 26:329–339.PubMedCrossRefGoogle Scholar
  54. Le Breton, G. C., Dinerstein, R. J., Rothe, L. J., and Feinberg, H., 1976, Direct evidence for intracellular divalent cation redistribution associated with platelet shape change, Biochem. Biophys. Res. Commun. 71:362–370.PubMedCrossRefGoogle Scholar
  55. Lim, C. T., and Cohen, I., 1982, Irreversible cross-linking process in thrombin-induced platelet aggregates (abstract). Circulation 66(Part II):698.Google Scholar
  56. Lin, D. C., Tobin, K. D., Grumet, M., and Lin, S., 1980, Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84:455–460.PubMedCrossRefGoogle Scholar
  57. Lind, S. E., Yin, H. L., and Stossel, T. P., 1982, Human platelets contain gelsolin, a regulator of actin filament length, J. Clin. Invest. 69:1384–1387.PubMedCrossRefGoogle Scholar
  58. Lüscher, E. F., 1956, Viscous metamorphoresis of blood platelets and clot retraction, Vox Sang. 1:133–154.CrossRefGoogle Scholar
  59. Majno, G., Bouvier, C. A., Gabbiani, G., Ryan, G. B., and Statkov, P., 1972, Kymographic recording of clot retraction: Effects of papaverine, theophylline and cytochalasin B, Thromb. Diath. Haemorrh. 28:49–53.PubMedGoogle Scholar
  60. Markey, F., and Lindberg, U., 1978, Human platelets contain profilin, a potential regulator of actin polymerisability, Febs Lett. 88:75–79.PubMedCrossRefGoogle Scholar
  61. Maruyama, K., 1981, Sonic vibration induces the nucleation of actin in the absence of magnesium ions and cytochalasins inhibit the elongation of the nuclei, J. Biol. Chem. 256:1060–1062.PubMedGoogle Scholar
  62. Massini, P., and Lüscher, E. F., 1976, On the significance of the influx of calcium ions into stimulated human blood platelets, Biochim. Biophys. Acta 436:652–663.PubMedCrossRefGoogle Scholar
  63. Massini, P., Käser-Glanzmann, R., and Lüscher, E. F., 1978, Movement of calcium ions and their role in the activation of platelets, Thromb. Haemostasis 40:212–218.Google Scholar
  64. Massini, P., Näf, U., and Lüscher, E. F., 1982, Clot retraction does not require Ca ions and depends on continuous contractile activity, Thromb. Res. 27:751–756.PubMedCrossRefGoogle Scholar
  65. Miller, O. V., Johnson, R. A., and Gorman, R. R., 1977, Inhibition of PGE1-stimulated cAMP accumulation in human platelets by thromboxane A2, Prostaglandins 13:599–609.PubMedCrossRefGoogle Scholar
  66. Michell, R. H., 1975, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147;PubMedGoogle Scholar
  67. Mürer, E. H., 1969, Clot retraction and energy metabolism of platelets. Effect and mechanism of inhibitors, Biochim. Biophys. Acta 172:266–276.PubMedCrossRefGoogle Scholar
  68. Mürer, E. H., and Holme, R., 1970, A study of the release of calcium from human blood platelets and its inhibition by metabolic inhibitors, N-ethylmaleimide and aspirin, Biochim. Biophys. Acta 222:197–205.PubMedCrossRefGoogle Scholar
  69. Nachmias, V.T., Sullender, J., Fallon, J., and Asch, A., 1980, Observations on the cytoskeleton of human platelets, Thromb. Haemostasis 42:1661–1666.Google Scholar
  70. Painter, R. G., and Ginsberg, M., 1982, Concanavalin A induces interaction between surface glycoproteins and the platelet cytoskeleton, J. Cell Biol. 92:565–573.PubMedCrossRefGoogle Scholar
  71. Perret, B., Chap, H. J., and Douste-Blazy, L., 1979, Asymmetric distribution of arachidonic acid in the plasma membrane of human platelets, Biochim. Biophys. Acta 556:434–446.PubMedCrossRefGoogle Scholar
  72. Phillips, D. R., Jennings, L. K., and Edwards, H. H., 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Cell Biol. 86:77–86.PubMedCrossRefGoogle Scholar
  73. Pollard, T. D., 1975, Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins, in: Molecules and Cell Movement (S. Inoue and R. E. Stephens, eds.), Raven Press, New York, pp. 259–285.Google Scholar
  74. Pollard, T. D., Fujiwara, K., Handin, R., and Weiss, G., 1977, Contractile proteins in platelet activation and contraction, Ann. N.Y. Acad. Sci. 283:218–236.CrossRefGoogle Scholar
  75. Polley, M. J., Leung, L. L. K., Clark, F. Y., and Nachman, R., 1981, Thrombin-induced platelet membrane glycoprotein lib and Ilia complex formation, J. Exp. Med. 154:1058–1068.PubMedCrossRefGoogle Scholar
  76. Reichstein, E., and Kom, E., 1979, Acanthamoeba profilin. A protein of low molecular weight from Acanthamoeba castellanii that inhibits actin nucleation, J. Biol. Chem. 254:6174–6179.PubMedGoogle Scholar
  77. Rink, T. J., Smith, S. W., and Tsien, R. Y., 1982, Cytoplasmic free Ca2+ in human platelets: thresholds and Ca-independent activation for shape change and secretion, Febs Lett. 148:21–26.PubMedCrossRefGoogle Scholar
  78. Rosenberg, S., and Stracher, A., 1982, Effect of actin-binding protein on the sedimentation properties of actin, J. Cell Biol. 94:51–55.PubMedCrossRefGoogle Scholar
  79. Rosenberg, S., Stracher, A., and Lucas, R. C., 1981, Isolation and characterization of actin and actin-binding protein from human platelets, J. Cell Biol. 91:201–211.PubMedCrossRefGoogle Scholar
  80. Rotman, A., Heldman, J., and Under, S., 1982a, Association of membrane and cytoplasmic proteins with the cytoskeleton in blood platelets, Biochemistry 21:1713–1719.PubMedCrossRefGoogle Scholar
  81. Rotman, A., Makov, N., and Lüscher, E. P., 1982b, Isolation and partial characterization of proteins from platelet pseudopods, Proc. Natl. Acad. Sci. U.S.A. 79:4357–4361.PubMedCrossRefGoogle Scholar
  82. Rubalcava, B., Martinez de Munoz, D., and Gitler, C., 1969, Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes. Biochemistry 8:2742–2747.PubMedCrossRefGoogle Scholar
  83. Salganicoff, L., Russo, M., and Loughnane, M., 1977, The platelet strip: A new model for the study of the mechanochemical properties of a platelet aggregate, Thromb. Haemostasis 38:155.Google Scholar
  84. Sano, K., Takai, Y., Yamanishi, J., and Nishizuka, Y., 1983, A role of calcium-activated phospholipid-dependent protein kinase in human platelet activation, J. Biol. Chem. 258:2010–2013.PubMedGoogle Scholar
  85. Sellers, J. R., Pato, M. D., and Adelstein, R. S., 1981, Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin, J. Biol. Chem. 256:13137–13142.PubMedGoogle Scholar
  86. Shepro, D., Belamarich, F. A., and Chao, F. C., 1969, Retardation of clot retraction after incubation of platelets with colchicine and heavy water, Nature (London) 221:563–565.CrossRefGoogle Scholar
  87. Simpson, P. A., and Spudich, J. A., 1980, ATP-driven steady-state exchange of monomeric and filamentous actin iiom Dictyostelium discoideum, Proc. Natl. Acad. Sci. U.S.A. 77:4610–4613.PubMedCrossRefGoogle Scholar
  88. Singer, S. J., 1971, The molecular organization of biological membranes, in:Structure and Function of Biological Membranes (L. I. Rothfield, ed.). Academic Press, New York, pp. 145–222.Google Scholar
  89. Sokal, G. (ed.), 1960, Etude morphologique de la metamorphose visqueuse et de la structuration du caillot en milieu plasmatique, in: Plaquettes sanguines et structure du caillot, Arscia, Brussels, pp. 17–59.Google Scholar
  90. Stendahl, O. I., and Stossel, T. P., 1980, Actin-binding protein amplifies actomyosin contraction, and gelsolin confers calcium control on the direction of contraction, Biochem. Biophys. Res. Commun. 92:675–681.PubMedCrossRefGoogle Scholar
  91. Tuszynski, G. P., Komecki, E., Ciemiewski, C., Knight, L., Koshy, A., Srivastava, S., Niewiarowski, S., and Walsh, P. N., 1984, Association of fibrin with the platelet cytoskeleton, J. Biol. Chem. 259:5247–5254.PubMedGoogle Scholar
  92. Vanderkooi, J., and Martonosi, A., 1969, Sarcoplasmic reticulum. VIII. Use of 8-amilino-l-naphtalene sulfonate as conformational probe on biological membranes, Arch. Biochem. Biophys. 133:153–163.PubMedCrossRefGoogle Scholar
  93. Van Deurs, B., and Behnke, O., 1980, Membrane structure of nonactivated and activated human blood platelets as revealed by freeze-fracture: Evidence for particle redistribution during platelet contraction, J. Cell Biol. 87:209–218.PubMedCrossRefGoogle Scholar
  94. Vickers, J. D., Kinlough-Rathbone, R. L., and Eraser Mustard, J., 1982, Changes in phosphatidyl in- ositol-4, 5-biphosphate 10 seconds after stimulation of washed rabbit platelets with ADP, Blood 60:1247–1250.PubMedGoogle Scholar
  95. Wegner, A., 1976, Head-to-tail polymerization of actin, J. Mol. Biol. 108:139–150.PubMedCrossRefGoogle Scholar
  96. White, J. G., 1971, Platelet microtubules and microfilaments: Effects of cytochalasin B on structure and function, in: Platelet Aggregation (J. Caen, ed.), Masson, Paris, pp. 15–52.Google Scholar
  97. White, J. G., 1974, Electron microscopic studies of platelet secretion, in: Progress in Hemostasis and Thrombosis 2 (T. H. Spaet, ed.), Grune and Stratton, New York and London, pp. 49–98.Google Scholar
  98. White, J. G., and Rao, G. H. R., 1982, Effects of a microtubule stabilizing agent on the response of platelets to vincristine. Blood 60:474–483.PubMedGoogle Scholar
  99. Wright, J. H., 1906, The origin and nature of the blood plates, Boston Med. Surg. J. 154:643–645.CrossRefGoogle Scholar
  100. Zucker, M. B., and Masiello, N. C., 1983, The Triton X-100 insoluble residue ("cytoskeleton") of aggregated platelets contains increased lipid phosphorus as well as 125I-labeled glycoproteins, Blood 61:676–683.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Isaac Cohen
    • 1
  1. 1.Atherosclerosis Program, Rehabilitation Institute of Chicago, and Department of Molecular BiologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations