The Organization of Platelet Contractile Proteins

  • Joan E. B. Fox


Ever since 1959, when Bettex-Galland and Lüscher first demonstrated the presence of the contractile proteins actin and myosin in platelets (Bettex-Galland and Lüscher, 1959), it has been assumed that these proteins function in the responses of platelets to stimulation. The observation that the filopodia of stimulated platelets contain bundles of actin filaments (Nachmias, 1980; White, 1968; Zucker-Franklin et al., 1967) suggested a role for contractile proteins in filopodia extension, whereas studies showing a ring of microfilaments surrounding the granules in activated platelets (White, 1974) indicated that secretion involves a contractile process. Other responses, such as the condensation of platelet aggregates and the retraction of fibrin clots, are even more obviously contractile in nature (Cohen et al., 1982; van Deurs and Behnke, 1980).


Actin Filament Myosin Light Chain Human Platelet Actin Polymerization Platelet Lysate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., and Conti, M. A., 1972, The characterization of contractile proteins from platelets and fibroblasts, Cold Spring Harbor Symp. Quant. Biol. 37:599–606.CrossRefGoogle Scholar
  2. Adelstein, R. S., and Conti, M. A., 1975, Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature (London) 256:597–598.CrossRefGoogle Scholar
  3. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 68:2703–2707.PubMedCrossRefGoogle Scholar
  4. Bennett, J. S., Vilaire, G. T., and Cines, D. B., 1982, Identification of the fibrinogen receptor on human platelets by photoaffinity labeling, J. Biol. Chem. 257:8049–8054.PubMedGoogle Scholar
  5. Bennett, V., 1979, Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Nature (London) 281:597–599.CrossRefGoogle Scholar
  6. Bennett, V., Davis, J., and Fowler, W. E., 1982, Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature (London) 299:126–131.CrossRefGoogle Scholar
  7. Bettex-Galland, M., and Lüscher, E. F., 1959, Extraction of an actomyosin-like protein from human thrombocytes, Nature (London) 184:276–277.CrossRefGoogle Scholar
  8. Blikstad, I., Markey, F., Carlsson, L., Persson, T., and Lindberg, U., 1978, Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I, Cell 15:935–943.PubMedCrossRefGoogle Scholar
  9. Blikstad, L, Sundkvist, I., and Eriksson, S., 1980, Isolation and characterization of profilactin and profilin from calf thymus and brain, Eur. J. Biochem. 105:425–433.PubMedCrossRefGoogle Scholar
  10. Boyles, J. K., 1982, A modified fixation for the preservation of microfilaments in cells and isolated F-actin (abstract), J. Cell Biol. 95:287a.Google Scholar
  11. Bray, D., and Thomas, C., 1976, Unpolymerized actin in fibroblasts and brain, J. Mol. Biol. 105:527–544.PubMedCrossRefGoogle Scholar
  12. Brenner, S. L., and Korn, E. D., 1979, Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill, J. Biol. Chem. 254:9982–9985.PubMedGoogle Scholar
  13. Brown, S. S., and Spudich, J. A., 1979, Cytochalasin inhibits the rate of elongation of actin filament fragments, J. Cell Biol. 83:657–662.PubMedCrossRefGoogle Scholar
  14. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478–486.PubMedCrossRefGoogle Scholar
  15. Carlsson, L., Nyström, L. E., Lindberg, U., Kannan, K. K., Cid-Dresdner, H., Lovgren, S., and Jomvall, H., 1976, Crystallization of a non-muscle actin, J. Mol. Biol. 105:353–366.PubMedCrossRefGoogle Scholar
  16. Carlsson, L., Markey, F., Blikstad, I., Persson, T., and Lindberg, U., 1979, Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay, Proc. Natl. Acad. Sci. U.S.A. 76:6376–6380.PubMedCrossRefGoogle Scholar
  17. Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin-binding protein during platelet activation. Blood 59:466–471.PubMedGoogle Scholar
  18. Carroll, R. C., Butler, R. G., and Morris, P. A., 1982, Separable assembly of platelet pseudopodal and contractile cytoskeletons. Cell 30:385–393.PubMedCrossRefGoogle Scholar
  19. Casella, J. F., Flanagan, M. D., and Lin, S., 1981, Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature (London) 293:302–305CrossRefGoogle Scholar
  20. Casella, J. F., Masiello, N. C., Lin, S., Bell, W., and Zucker, M. B., 1983, Identification of fibrinogen derivatives in the Triton-insoluble residue of human blood platelets. Cell Motil. 3:21–30.PubMedCrossRefGoogle Scholar
  21. Cohen, I., and Cohen, C., 1972, A tropomyosin-like protein from human platelets, J. Mol. Biol. 68:383–387.Google Scholar
  22. Cohen, L, Gerrard, J. M., and White, J. G., 1982, Ultrastructure of clots during isometric contraction, J. Cell Biol. 93:775–787.PubMedCrossRefGoogle Scholar
  23. Collier, N. C., and Wang, K., 1982a, Purification and properties of human platelet P235. A high molecular weight protein substrate of endogenous calcium-activated protease(s), J. Biol. Chem. 257:6937–6943.PubMedGoogle Scholar
  24. Collier, N. C., and Wang, K., 1982b, Human platelet P235: A high Mr protein which restricts the length of actin filaments, FEBS Lett. 143:205–210.PubMedCrossRefGoogle Scholar
  25. Collier, N. C., and Wang, K., 1983a, Calcium sensitive modulation of actin polymerization by human platelet P235 (abstract), J. Cell Biol. 96:289a.Google Scholar
  26. Collier, N. C., and Wang, K., 1983b, Human platelet P235: A high Mr cytoplasmic protein which modulates actin polymerization (abstract), Biophys. J. 41:86a.Google Scholar
  27. Coté, G. P., and Smillie, L. B., 1981a, The interaction of equine platelet tropomyosin with skeletal muscle actin, J. Biol. Chem. 256:7257–7261.PubMedGoogle Scholar
  28. Coté, G. P., and Smillie, L. B., 1981b, Preparation and some properties of equine platelet tropomyosin, J. Biol. Chem. 256:11004–11010.PubMedGoogle Scholar
  29. Coté, G., Lewis, W. G., and Smillie, L. B., 1978a, Non-polymerizability of platelet tropomyosin and its NH2- and COOH-terminal sequences, FEBS Lett. 91:237–241.PubMedCrossRefGoogle Scholar
  30. Coté, G. P., Lewis, W. G., Pato, M. D., and Smillie, L. B., 1978b, Platelet tropomyosin: Lack of binding to skeletal muscle troponin and correlation with sequence, FEBS Lett. 94:131–135.PubMedCrossRefGoogle Scholar
  31. Daniel, J. L., and Adelstein, R. S., 1976, Isolation and properties of platelet myosin light chain kinase. Biochemistry 15:2370–2377.PubMedCrossRefGoogle Scholar
  32. Daniel, J. L., Holmsen, H., and Adelstein, R. S., 1977, Thrombin-stimulated myosin phosphorylation in intact platelets and its possible involvement in secretion, Thromb. Haemost. 38:984–989.PubMedGoogle Scholar
  33. Daniel, J. L., Molish, I. R., and Holmsen, H., 1981, Myosin phosphorylation in intact platelets, J. Biol. Chem. 256:7510–7514.PubMedGoogle Scholar
  34. Davies, P. J. A., Wallach, D., Willingham, M. C., Pastan, I., Yamaguchi, M., and Robson, R. M., 1978, Filamin-actin interaction. Dissociation of binding from gelation by Ca2+-activated proteolysis, J. Biol. Chem. 253:4036–4042.PubMedGoogle Scholar
  35. Dayton, W. R., Reville, W. J., Göll, D. E., and Stromer, M. H., 1976, A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Partial characterization of the purified enzyme, Biochemistry 15:2159–2167.PubMedCrossRefGoogle Scholar
  36. Debus, E., Weber, K., and Osborn, M., 1981, The cytoskeleton of blood platelets viewed by immunofluorescence microscopy, Eur. J. Cell Biol. 24:45–52.PubMedGoogle Scholar
  37. DeMartino, G. N., 1981, Calcium-dependent proteolytic activity in rat liver: Identification of two proteases with different calcium requirements. Arch. Biochem. Biophys. 211:253–257.CrossRefGoogle Scholar
  38. Feinstein, M. B., 1980, Release of intracellular membrane-bound calcium precedes the onset of stimulus- induced exocytosis in platelets, Biochem. Biophys. Res. Commun. 93:593–600.PubMedCrossRefGoogle Scholar
  39. Feinstein, M. B., Egan, J. J., and Opas, E. E., 1983, Reversal of thrombin-induced myosin phosphorylation and the assembly of cytoskeletal structures in platelets by the adenylate cyclase stimulants prostaglandin D2 and forskolin, J. Biol. Chem. 258:1260–1267.PubMedGoogle Scholar
  40. Flanagan, M. D., and Lin, S., 1980, Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin, J. Biol Chem. 255:835–838.PubMedGoogle Scholar
  41. Fox, J. E. B., and Phillips, D. R., 1981, Inhibition of actin polymerization in blood platelets by cytochalasins, Nature (London) 292:650–652.CrossRefGoogle Scholar
  42. Fox, J. E. B., and Phillips, D. R., 1982, Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets, J. Biol. Chem. 257:4120–4126.PubMedGoogle Scholar
  43. Fox, J. E. B., Say, A. K., and Haslam, R. J., 1979, Subcellular distribution of the different platelet proteins phosphorylated on exposure of intact platelets to ionophore A23187 or to prostaglandin Ei. Possible role of a membrane phosphopolypeptide in the regulation of calcium-ion transport, Biochem. J. 184:651–661.PubMedGoogle Scholar
  44. Fox, J. E. B., Dockter, M. E., and Phillips, D. R., 1981, An improved method for determining the actin filament content of nonmuscle cells by the DNase I inhibition assay. Anal. Biochem. 117:170–177.PubMedCrossRefGoogle Scholar
  45. Fox, J. E. B., Reynolds, C. C., and Phillips, D. R., 1983a, Calcium-dependent proteolysis occurs during platelet aggregation, J. Biol. Chem. 258:9973–9981.PubMedGoogle Scholar
  46. Fox, J. E. B., Baughan, A. K., and Phillips, D. R., 1983b, Direct linkage of GP lb to a Mr = 250,000 polypeptide in platelet cytoskeletons. Blood 62:255a.Google Scholar
  47. Fox, J. E. B., Boyles, J. K., Reynolds, C. C., and Phillips, D. R., 1984, Actin filament content and organization in unstimulated platelets, J. Cell Biol. 98: 1985–1991.PubMedCrossRefGoogle Scholar
  48. Geiger, B., 1979, A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205.PubMedCrossRefGoogle Scholar
  49. Geiger, B., Dutton, A. H., Tokuyasu, K. T., and Singer, S. J., 1981, Immunoelectron microscope studies of membrane-microfilament interactions: Distributions of α-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells, J. Cell Biol. 91:614–628.PubMedCrossRefGoogle Scholar
  50. Gerrard, J. M., Schollmeyer, J. V., Phillips, D. R., and White, J. G., 1979, α-Actinin deficiency in i thrombasthenia. Possible identity of α-actinin and glycoprotein III, Am. J. Pathol. 94:509–523.PubMedGoogle Scholar
  51. Glenney, J. R., Jr., Glenney, P., and Weber, K., 1982a, F-Actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule, J. Biol. Chem. 257:9781–9787.PubMedGoogle Scholar
  52. Glenney, J. R., Glenney, P., Osbom, M., and Weber, K., 1982b, An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin.Cell 28:843–854.PubMedCrossRefGoogle Scholar
  53. Gogstad, G. O., Brosstad, F., Krutnes, M-B., Hägen, I., and Solum, N. O., 1982, Fibrinogen-binding properties of the human platelet glycoprotein Ilb-IIIa complex: A study using crossed-radioim- munoelectrophoresis, Blood 60:663–671.PubMedGoogle Scholar
  54. Gordon, D. J., Boyer, J. L., and Kom, E. D., 1977, Comparative biochemistry of non-muscle actins, J. Biol. Chem. 252:8300–8309.PubMedGoogle Scholar
  55. Grumet, M., and Lin, S., 1980, A platelet inhibitor protein with cytochalasin-like activity against actin polymerization in vitro, Cell 21:439–444.Google Scholar
  56. Hartwig, J. H., and Stossel, T. P., 1975, Isolation and properties of actin, myosin, and a new actin-binding protein in rabbit alveolar macrophages, J. Biol. Chem. 250:5696–5705.PubMedGoogle Scholar
  57. Hartwig, J. H., and Stossel, T. P., 1981, Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments, J. Mol. Biol. 145:563–581.PubMedCrossRefGoogle Scholar
  58. Hartwig, J. H., Tyler, J., and Stossel, T. P., 1980, Actin-binding protein promotes the bipolar and perpendicular branching of actin filaments, J. Cell Biol. 87: 841–848.PubMedCrossRefGoogle Scholar
  59. Haslam, R. J. and Lynham, J. A., 1977, Relationship between phosphorylation of blood platelet proteins and secretion of platelet granule constituents. I: Effects of different aggregating agents. Biochem. Biophys. Res. Commun. 77:714–722.PubMedCrossRefGoogle Scholar
  60. Haslam, R. J., Lynham, J. A., and Fox, J. E. B., 1979, Effects of collagen, ionophore A23187 and prostaglandin E1 on the phosphorylation of specific proteins in blood platelets, Biochem. J. 178:397–406.PubMedGoogle Scholar
  61. Hathaway, D. R., and Adelstein, R. S., 1979, Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity, Proc. Natl. Acad. Sci. U.S.A. 76:1653–1657.PubMedCrossRefGoogle Scholar
  62. Howell, S. L., and Tyhurst, M., 1980, Regulation of actin polymerization in rat islets of Langerhans, Biochem. J. 192:381–383.PubMedGoogle Scholar
  63. Ishikawa, H., Bischoff, R., and Holzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol. 43:312–328.PubMedCrossRefGoogle Scholar
  64. Jenkins, C. S. P., Gordon, P. B., Hatcher, V. B., and Puszkin, E. G., 1982, The presence of vinculin in cultured human endothelial cells and in platelets (abstract), J. Cell Biol. 95:282a.Google Scholar
  65. Jennings, L. K., Fox, J. E. B., Edwards, H. H., and Phillips, D. R., 1981, Changes in the cytoskeletal structure of human platelets following thrombin activation, J. Biol. Chem. 256:6927–6932.PubMedGoogle Scholar
  66. Käser-Glanzmann, R., Jakäbovä, M., George, J. N., and Lüscher, E. F., 1978, Further characterization of calcium-accumulating vesicles from human blood platelets, Biochim. Biophys. Acta 512:1–12.PubMedCrossRefGoogle Scholar
  67. Kishimoto, A., Kajikawa, N., Shiota, M., and Nishizuka, Y., 1983, Proteolytic activation of calcium- activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease, J. Biol. Chem. 258:1156–1164.PubMedGoogle Scholar
  68. Kom, E. D., 1978, Biochemistry of actomyosin-dependent cell motility (a review), Proc. Natl. Acad. Sci. U.S.A. 75:588–599.CrossRefGoogle Scholar
  69. Kom, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev. 62:672–737.Google Scholar
  70. Landon, F., and Olomucki, A., 1983, Isolation and physico-chemical properties of blood platelet a-actinin, Biochim. Biophys. Acta 742:129–134.PubMedCrossRefGoogle Scholar
  71. Landon, F., Hue, C., Thome, F., Oriol, C., and Olomucki, A., 1977, Human platelet actin. Evidence of ß and 7 forms and similarity of properties with sarcomeric actin, Eur. J. Biochem. 81:571–577.PubMedCrossRefGoogle Scholar
  72. Langer, B., Gonnella, P., Nachmias, V., Leung, L., and Siliciano, J., 1982a, Presence of a-actinin and vinculin in normal and thrombasthenic platelets (abstract), J. Cell Biol. 95:296a.Google Scholar
  73. Langer, B. G., Leung, L. L. K., Gonnella, P. A., Nachmias, V. T., Nachman, R. L., and Pepe, F. A., 1982b, α-Actinin and membrane glycoprotein Ilia are different proteins in human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 79:432–435.PubMedCrossRefGoogle Scholar
  74. Lazarides, E., and Lindberg, U., 1974, Actin is the naturally occurring inhibitor of deoxyribonuclease I, Proc. Natl. Acad. Sci. U.S.A. 71:4742–4746.PubMedCrossRefGoogle Scholar
  75. Lebowitz, E. A., and Cooke, R., 1978, Contractile properties of actomyosin from human blood platelets, J. Biol. Chem. 253:5443–5447.PubMedGoogle Scholar
  76. Le Breton, G. C., Dinerstein, R. J., Roth, L. J., and Feinberg, H., 1976, Direct evidence for intracellular divalent cation redistribution associated with platelet shape change, Biochem. Biophys. Res. Commun. 71:362–370.PubMedCrossRefGoogle Scholar
  77. Lin, S., Wilkins, J. A., Cribbs, D. H., Grumet, M., and Lin, D. C., 1982, Proteins and complexes that affect actin-filament assembly and interactions. Cold Spring Harbor Symp. Quant. Biol. 46:625–632.PubMedCrossRefGoogle Scholar
  78. Lind, S. E., and Stossel, T. P., 1982, The microfilament network of the platelet. Prog. Hemost. Thromb. 6:63–84.PubMedGoogle Scholar
  79. Lind, S. E., Yin, H. L., and Stossel, T. P., 1982, Human platelets contain gelsolin. A regulator of actin filament length, J. Clin. Invest. 69:1384–1387.PubMedCrossRefGoogle Scholar
  80. Lux, S. E., 1979a, Dissecting the red cell membrane skeleton. Nature (London) 281:426–429.CrossRefGoogle Scholar
  81. Lux, S. E., 1979b, Spectrin-actin membrane skeleton of normal and abnormal red blood cells, Semin. Hematol. 16:21–51.PubMedGoogle Scholar
  82. Lyons, R. M., Stanford, N., and Majerus, P. W., 1975, Thrombin-induced protein phosphorylation in human platelets, J. Clin. Invest. 56:924–936.PubMedCrossRefGoogle Scholar
  83. MacLean-Fletcher, S., and Pollard, T. D., 1980, Mechanism of action of cytochalasin B on actin. Cell 20:329–341.PubMedCrossRefGoogle Scholar
  84. Markey, F., Lindberg, U., and Eriksson, L., 1978, Human platelets contain profilin, a potential regulator of actin polymerisability, FEBS Lett. 88:75–79.PubMedCrossRefGoogle Scholar
  85. Markey, F., Persson, T., and Lindberg, U., 1981, Characterization of platelet extracts before and after stimulation with respect to the possible role of profilactin as microfilament precursor, Cell 23:145–153.PubMedCrossRefGoogle Scholar
  86. Markey, F., Larsson, H., Weber, K., and Lindberg, U., 1982, Nucleation of actin polymerization from profilactin opposite effects of different nuclei, Biochim. Biophys. Acta 704:43–51.PubMedCrossRefGoogle Scholar
  87. Mellgren, R. L., 1980, Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium, FEBS Lett. 109:129–133.PubMedCrossRefGoogle Scholar
  88. Mellgren, R. L., Repetti, A., Muck, T. C., and Easly, J., 1982, Rabbit skeletal muscle calcium-dependent protease requiring millimolar Ca2+. Purification, subunit structure, and Ca++-dependent auto-proteolysis, J. Biol. Chem. 257:7203–7209.PubMedGoogle Scholar
  89. Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, T., 1981, Intracellular Ca++-dependent protease (calpain) and its high molecular-weight endogenous inhibitor (calpastatin), Adv. Enzyme Regul. 19:407–424.CrossRefGoogle Scholar
  90. Nachman, R. L., and Leung, L. K., 1982, Complex formation of platelet membrane glycoproteins lib and Ilia with fibrinogen, J. Clin. Invest. 69:263–269.PubMedCrossRefGoogle Scholar
  91. Nachmias, V. T., 1980, Cytoskeleton of human platelets at rest and after spreading, J. Cell Biol. 86:795- 802.Google Scholar
  92. Niederman, R., and Pollard, T. D., 1975, Human platelet myosin. II. In vitro assembly and structure of myosin filaments, J. Cell Biol. 67:72–92.PubMedCrossRefGoogle Scholar
  93. Painter, R. G., and Ginsberg, M., 1982, Concanavalin A induces interactions between surface glycoproteins and the platelet cytoskeleton, J. Cell Biol. 92:565–573.PubMedCrossRefGoogle Scholar
  94. Phillips, D. R., and Jakäbovä, M., 1977, Ca++-Dependent protease in human platelets, J. Biol. Chem. 252:5602–5605.PubMedGoogle Scholar
  95. Phillips, D. R., Jennings, L. K., and Edwards, H. H., 1980, Identification of membrane proteins mediating the interaction of human platelets, J. Cell Biol. 86:77–86.PubMedCrossRefGoogle Scholar
  96. Pollard, T. D., and Craig, S. W., 1982, Mechanism of actin polymerization, Trends Biochem. Sci. 7:55–58.CrossRefGoogle Scholar
  97. Pollard, T. D., and Mooseker, M. S., 1981, Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores, J. Cell Biol. 88:654–659.PubMedCrossRefGoogle Scholar
  98. Pollard, T. D., Thomas, S. M., and Niederman, R., 1974, Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells. Anal. Biochem. 60:258–266.PubMedCrossRefGoogle Scholar
  99. Pollard, T. D., Fujiwara, K., Handin, R., and Weiss, G., 1977, Contractile proteins in platelet activation and contraction, Ann. N.Y. Acad. Sci. 283:218–236.CrossRefGoogle Scholar
  100. Reichstein, E., and Kom, E., 1979, Acanthamoeba profilin. A protein of low molecular weight from Acanthamoeba castellanii that inhibits actin nucleation, J. Biol. Chem. 254:6174–6179.PubMedGoogle Scholar
  101. Rink, T. J., Smith, S. W., and Tsien, R. Y., 1982, Cytoplasmic free Ca2+ in human platelets: Ca2+ thresholds and Ca-independent activation for shape-change and secretion, FEBS Lett. 148:21–26.PubMedCrossRefGoogle Scholar
  102. Rodemann, H. P., Waxman, L., and Goldberg, A. L., 1982, The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease, J. Biol. Chem. 257:8716–8723.PubMedGoogle Scholar
  103. Rosenberg, S., and Stracher, A., 1982, Effect of actin-binding protein on the sedimentation properties of actin, J. Cell Biol. 94:51–55.PubMedCrossRefGoogle Scholar
  104. Rosenberg, S., Stracher, A., and Burridge, K., 1981a, Isolation and characterization of a calcium-sensitive a-actinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 56:12986–12991.Google Scholar
  105. Rosenberg, S., Stracher, A., and Lucas, R. C., 1981b, Isolation and characterization of actin and actin- binding protein from human platelets, J. Cell Biol. 91:201–211.PubMedCrossRefGoogle Scholar
  106. Scholey, J. M., Taylor, K. A., and Kendrick-Jones, J., 1980, Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature (London) 287:233–235.CrossRefGoogle Scholar
  107. Schollmeyer, J. V., Rao, G. H. R., and White, J. G., 1978, An actin-binding protein in human platelets. Interactions with a-actinin on gelatin of actin and the influence of cytochalasin B, Am. J. Pathol. 93:433–446.PubMedGoogle Scholar
  108. Sixma, J. J., Schiphorst, M. E., Verhoeckx, C., and Jockusch, B. M., 1982, Peripheral and integral proteins of human blood platelet membranes. a-Actinin is not identical to glycoprotein III, Biochim. Biophys. Acta 704:333–344.PubMedCrossRefGoogle Scholar
  109. Solum, N. O., Olsen, T., and Gogstad, G., 1983, GP lb in the Triton-soluble (cytoskeletal) fraction of platelets (abstract), Thromb. Haemost. 50:372a.Google Scholar
  110. Stracher, A., Qingqi, Z., Lawrence, J., and Rosenberg, S., 1982, Role of phosphorylation in the regulation of platelet cytoskeletal formation (abstract), Fed. Proc. 41:657.Google Scholar
  111. Swanston-Flatt, S. K., Carlsson, L., and Gylfe, E., 1980, Actin filament formation in pancreatic ß-cells during glucose stimulation of insulin secretion, FEBS Lett. 117:299–302.PubMedCrossRefGoogle Scholar
  112. Taylor, D. G., Mapp, R. J., and Crawford, N., 1975, The identification of actin associated with pig platelet membranes and granules, Biochem. Soc. Trans. 3:161–164.PubMedGoogle Scholar
  113. Toyo-Oka, T., Shimizu, T., and Masaki, T., 1978, Inhibition of proteolytic activity of calcium-activated neutral protease by leupeptin and antipain, Biochem. Biophys. Res. Commun. 82:484–491.PubMedCrossRefGoogle Scholar
  114. Truglia, J. A., and Stracher, A., 1981, Purification and characterization of a calcium-dependent sulfhydryl protease from human platelets, Biochem. Biophys. Res. Commun. 100:814–822.PubMedCrossRefGoogle Scholar
  115. Tsujinaka, T., Sakon, M., Kambayashi, J., and Kosaki, G., 1982, Cleavage of cytoskeletal proteins by two forms of Ca2+ activated neutral proteases in human platelets, Thromb. Res. 28:149–156.PubMedCrossRefGoogle Scholar
  116. van Deurs, B., and Behnke, O., 1980, Membrane structure of nonactivated and activated human blood platelets as revealed by freeze-fracture: Evidence for particle redistribution during platelet contraction, J. Cell Biol. 87:209–218.PubMedCrossRefGoogle Scholar
  117. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Purification of mammalian filamin. Similarity to high molecular weight actin-binding protein in macrophages, platelets, fibroblasts, and other tissues, J. Biol. Chem. 253:3328–3335.Google Scholar
  118. Wegner, A., 1976, Head to tail polymerization of actin, J. Mol. Biol. 108:139–150.PubMedCrossRefGoogle Scholar
  119. White, G. C., 1980, Calcium-dependent proteins in platelets: Response of calcium-activated protease in normal and thrombasthenic platelets to aggregating agents, Biochim. Biophys. Acta 631:130–138.PubMedCrossRefGoogle Scholar
  120. White, J. G., 1968, Fine structural alterations induced in platelets by adenosine diphosphate, Blood 31:604–622.PubMedGoogle Scholar
  121. White, J. G., 1974, Electron microscopic studies of platelet secretion. Prog. Hemost. Thromb. 2:49–98.PubMedGoogle Scholar
  122. Wilkins, J. A., and Lin, S., 1982, High-affinity interaction of vinculin with actin filaments in vitro. Cell 28:83–90.PubMedCrossRefGoogle Scholar
  123. Yin, H. L., and Stossel, T. P., 1980, Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages, J. Biol. Chem. 255:9490–9493.PubMedGoogle Scholar
  124. Yin, H. L., Zaner, K. S., and Stossel, T. P., 1980, Ca2+ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation, J. Biol. Chem. 255:9494–9500.PubMedGoogle Scholar
  125. Yin, H. L., Hartwig, J. H., Maruyama, K., and Stossel, T. P., 1981, Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization, J. Biol. Chem. 256:9693–9697.PubMedGoogle Scholar
  126. Yoshida, N., Weksler, B., and Nachman, R., 1983, Purification of human platelet calcium-activated protease. Effect on platelet and endothelial function, J. Biol. Chem. 258:7168–7174.PubMedGoogle Scholar
  127. Zimmerman, U-J. P., and Schlaepfer, W. W., 1982, Characterization of a brain calcium-activated protease that degrades neurofilament proteins. Biochemistry 21:3977–3983.PubMedCrossRefGoogle Scholar
  128. Zucker-Franklin, D., and Grusky, G., 1972, The actin and myosin filaments of human and bovine blood platelets, J. Clin. Invest. 51:419–430.PubMedCrossRefGoogle Scholar
  129. Zucker-Franklin, D., Nachman, R. L., and Marcus, A. J., 1967, Ultrastructure of thrombosthenin, the contractile protein of human blood platelets, Science 157:945–946.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Joan E. B. Fox
    • 1
  1. 1.The Gladstone Foundation Laboratories for Cardiovascular Disease, Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations