Lectin—Carbohydrate Binding as a Model for Platelet Contact Interactions

  • T. Kent Gartner


Lectins have been defined as sugar-binding proteins or glycoproteins of nonimmune origin that can agglutinate cells and/or glycoconjugates (Goldstein et al., 1980). Lectins occur in plants and animals, and are devoid of enzymatic activity for the sugars to which they bind and do not require glycosidic hydroxyl groups on these sugars for their binding (Kocoureck and Horejsi, 1981; Barondes, 1981). One of the functions suggested for lectins is that of mediating direct cell—cell interactions (reviewed in Phillips and Gartner, 1980; Barondes, 1981). The first data suggesting this functional activity was published by Rosen et al. (1973), who showed that a lectin expressed by the cellular slime mold Dictyostelium discoideum may mediate the cohesiveness of these cells. Since these initial studies, numerous studies have appeared concerning the role of carbohydrate-binding proteins in aggregation of slime mold cells (reviewed in Bartles et al., 1982; Barondes, 1981). The concept developed from these studies is that lectins, bound to carbohydrate-containing receptors on adjacent cells, mediate cell—cell interaction. This concept has been utilized to explain the interactions of a wide variety of cells, including sea urchin egg-sperm interactions (Glabe et al., 1982), the attachment of Rhizobium trifolii to the roots of clover (Dazzo, 1981), attachment of Escherichia coli to mucosal cells (Ofek et al, 1977), the attachment of the Sendai virus to host cells (Markwellet al., 1981), and phagocytosis by human neutrophils (Doolittle et al, 1983).


Human Platelet Amino Sugar Slime Mold Hemagglutination Activity Lectin Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agam, G., and Livne, A., 1983, Passive participation of fixed platelets in aggregation facilitated by covalently bound fibrinogen, Blood 61:186–191.PubMedGoogle Scholar
  2. Barondes, S. H., 1981, Lectins: Their multiple endogenous cellular functions,Annu. Rev. Biochem. 50:207–231.PubMedCrossRefGoogle Scholar
  3. Bartles, J. R., Frazier, W. A., and Rosen, S. D., 1982, Slime mold lectins. Int. Rev. Cytol. 75:61–99.PubMedCrossRefGoogle Scholar
  4. Charo, I. F., Feinman, R. D., and Detwiler, T. C., 1977, Interrelations of platelet aggregation and secretion,J. Clin. Invest. 60:866–873.PubMedCrossRefGoogle Scholar
  5. Dazzo, F. B., 1981, Bacterial attachment as related to cellular recognition in the rhizobium-legume symbiosis, J. Supramol. Struct. 16:29–41.CrossRefGoogle Scholar
  6. Doolittle, R. L., Packman, C. H., and Lichtman, M. A., 1983, Amino-sugars enhance recognition and: phagocytosis of particles by human neutrophils. Blood 62:697–701.PubMedGoogle Scholar
  7. Feinman, R. D., and Detwiler, T. C., 1974, Platelet secretion induced by divalent cation ionophores, Nature (London) 249:172–173.CrossRefGoogle Scholar
  8. Fenton, J. W. II, Landis, B. H., Walz, D. A., and Finlayson, J. S., 1977, Human thrombins, in: Chemistry and Biology of Thrombin (R. L. Lundblade, J. W. Fenton II, and K. G. Mann, eds.), Ann Arbor Science Publishers, Ann Arbor, Michigan, pp. 43–70.Google Scholar
  9. Gartner, T. K., and Dockter, M. E., 1983, Secreted platelet thrombospondin binds monovalently to platelets and erythrocytes in the absence of free Ca2+,Thromb. Res. 33:19–30.CrossRefGoogle Scholar
  10. Gartner, T. K., and Walz, D. A., 1983, TSP inhibits the expression of the endogenous platelet lectin and secretion of a-granules, Thromb. Res. 29:63–74.PubMedCrossRefGoogle Scholar
  11. Gartner, T. K., Williams, D. C., and Phillips, D. R., 1977, Platelet plasma membrane lectin activity, Biochem. Biophys. Res. Commun. 79:592–599.PubMedCrossRefGoogle Scholar
  12. Gartner, T. K., Williams, D. C., Minion, F. C., and Phillips, D. R., 1978, Thrombin-induced platelet aggregation is mediated by a platelet plasma membrane-bound lectin. Science 200:1281–1283.PubMedCrossRefGoogle Scholar
  13. Gartner, T. K., Phillips, D. R., and Williams, D. C., 1980a, Expression of thrombin-enhanced platelet lectin activity is controlled by secretion, Febs Lett. 113:196–200.PubMedCrossRefGoogle Scholar
  14. Gartner, T. K., Stocker, K., and Williams, D. C., 1980b, Thrombolectin: A lectin isolated from Bothrops atrox venom, Febs Lett. 117:13–16.PubMedCrossRefGoogle Scholar
  15. Gartner, T. K., Gerrard, J. M., White, J. G., and Williams, D. C., 1981a, Fibrinogen is the receptor for the endogenous lectin of human platelets. Nature (London) 289:688–690.CrossRefGoogle Scholar
  16. Gartner, T. K., Gerrard, J. M., White, J. G., and Williams, D. C., 1981b, The endogenous lectin of human platelets is an a-granule component, Blood 58:153–157.PubMedGoogle Scholar
  17. Gartner, T. K., Doyle, M. J., and Mosher, D. F., 1983, Anti-TSP serum inhibits the endogenous lectin activity of A23187 activated and 7-thrombin activated human platelets,Thromb. Haemostasis 50:124a.Google Scholar
  18. George, J. N., Lyons, R. M., and Morgan, R. K., 1980, Membrane changes associated with exposure of actin on the platelet surface after thrombin-induced secretion, J. Clin. Invest. 66:1–9.PubMedCrossRefGoogle Scholar
  19. Gerrard, J. M., White, J. G., Roa, G. H. R., Krivit, W., and Witkop, C. J., Jr., 1975, Labile aggregation stimulating substance (LASS): The factor from storage pool deficient platelets correcting defective aggregation and release of aspirin-treated normal platelets, Br. J. Haematol. 29:657–665.PubMedCrossRefGoogle Scholar
  20. Gerrard, J. M., Phillips, D. R., Rao, G. H. R., Plow, E. F., Walz, D. A., Ross, R., Marker, L. A., and White, J. G., 1980, Biochemical studies of two patients with the gray platelet syndrome-selective deficiency of platelet alpha granules, J. Clin. Invest. 66:102–109.PubMedCrossRefGoogle Scholar
  21. Glabe, C. G., Grabel, L. B., Vacquier, V. D., and Rosen, S. D., 1982, Carbohydrate specificity of sea urchin sperm binding: a cell surface lectin mediating sperm-egg adhesion, J. Cell Biol. 94:123–128.PubMedCrossRefGoogle Scholar
  22. Goldstein, I. J., Hughes, R. C., Monsigny, M., Osawa, T., and Sharon, N., 1980, What should be called a: lectin?. Nature (London) 285:66.CrossRefGoogle Scholar
  23. Hagan, I., 1975, Effects of thrombin on washed, human platelets: Changes in subcellular fractions, Biochim. Biophys. Acta 392:242–254.CrossRefGoogle Scholar
  24. Jaffe, E. A., Leung, L. L. K., Nachman, R. L., Levin, R. I., and Mosher, D. F., 1982, Thrombospondin is the endogenous lectin of human platelets. Nature (London) 295:246–248.CrossRefGoogle Scholar
  25. Kindness, G., Williamson, F. B., and Long, W. F., 1980, Inhibitory effect of trifluoperazine on aggregation of human platelets, Thromb. Res. 17:549–554.PubMedCrossRefGoogle Scholar
  26. Kinlough-Rathbone, R. L., Chahil, A., Perry, D. W., Packham, M. A., and Mustard, J. F., 1979, Effect of amino sugars that block platelet lectin activity on fibrinogen binding to washed rabbit or human platelets. Blood 54:249a.Google Scholar
  27. Kirby, E. P., Niewiarowski, S., Stocker, K., Kettner, C., Shaw, E., and Brudzynski, T. M., 1979, Thrombocytin, a serine protease from Bothrops atrox venom. 1. Purification and characterization of the enzyme, Biochemistry 18:3564–3570.PubMedCrossRefGoogle Scholar
  28. Kocoureck, J., and Horejsi, V., 1981, Defining a lectin, Nature (London) 290:188.CrossRefGoogle Scholar
  29. Lawler, J. W., Slayter, H. S., and Coligan, J. E., 1978, Isolation and characterization of a high molecular weight glycoprotein from human blood platelets, J. Biol. Chem. 253:8609–8616.PubMedGoogle Scholar
  30. Leung, L. L. K., and Nachman, R. L., 1982, Complex formation of platelet thrombospondin with fibrinogen, J. Clin. Invest. 70:542–549.PubMedCrossRefGoogle Scholar
  31. Levy-Toledano, S., Caen, J. P., Gorius-Breton, J., Rendu, F., Golenzer-Cywiner, C., Dupuy, E., Legrand, Y., and Maclouf, J., 1981, Gray platelet syndrome: α-Granule deficiency, its influence on platelet function, J. Lab. Clin. Med. 98:831–848.PubMedGoogle Scholar
  32. Markwell, M. A. K., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides function as host cell receptors for Sendai virus,Proc. Natl. Acad. Sci. U.S.A. 78:5406–5410.PubMedCrossRefGoogle Scholar
  33. Mustard, J. F., Perry, D. W., Rathbone-Kinlough, R. L., and Packham, M. A., 1975, Factors responsible for ADP-induced release reaction of human platelets. Am. J. Physiol. 228:1757–1765.PubMedGoogle Scholar
  34. Niewiarowski, S., Kirby, E. P., Brudzynski, T. M., and Stocker, K., 1979, Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma clotting factors, Biochemistry 18:3570–3577.PubMedCrossRefGoogle Scholar
  35. Nurden, A. T., Hasitz, M., and Rosa, J-P., 1983, Inhibition of thrombin-induced platelet aggregation by a rabbit antibody against human platelet thrombospondin, Thromb. Haemostasis 50:132a.Google Scholar
  36. Ofek, L, Mirelman, D., and Sharon, N., 1977, Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors, Nature (London) 265:623–625.CrossRefGoogle Scholar
  37. Phillips, D. R., and Agin, P. P., 1977, Platelet membrane defects in Glanzmann’s thrombasthenia, J. Clin. Invest. 60:535–545.PubMedCrossRefGoogle Scholar
  38. Phillips, D. R., and Gartner, T. K., 1980, Cell recognition systems in eukaryotic cells, in: Bacterial Adherence (Receptors and Recognition, Series B, Volume 6) (E. H. Beachy, ed.). Chapman and Hall, London, pp. 401–438.Google Scholar
  39. Phillips, D. R., Jennings, L. K., and Prasanna, H. R., 1980, Ca2+-mediated association of glycoprotein G (thrombin sensitive protein, thrombospondin) with human platelets, J. Biol. Chem. 255:11629–11632.PubMedGoogle Scholar
  40. Rosen, S. D., Kafka, J. A., Simpson, D. L., and Barondes, S. L., 1973, Developmentally regulated, carbohydrate-binding protein in Dictyostelium discoidium, Proc. Natl. Acad. Sci. U.S.A. 70:2554–2557.PubMedCrossRefGoogle Scholar
  41. Shapiro, R. S., Gerrard, J. M., Ramsay, N. K. C., Nesbit, M. E., Coccia, P. F., Stoddard, S. F., Plow, E. F., White, J. G., and Krivit, W., 1980, Selective deficiencies in collagen-induced platelet aggregation during L’asparaginase therapy. Am. J. Pediatr. Hematol. Oncol. 2:207–212.PubMedGoogle Scholar
  42. Sharon, N., and Lis, H., 1972, Lectins: Cell-agglutinating and sugar specific proteins,Science 177:949–959.PubMedCrossRefGoogle Scholar
  43. White, G. C. II, and Raynor, S. T., 1980, The effects of trifluoperazine, an inhibitor of calmodulin, in platelet function, Thromb. Res. 18:279–284.PubMedCrossRefGoogle Scholar
  44. White, J. G., 1972, Interaction of membrane systems in blood platelets.Am J. Pathol. 66:295–312.PubMedGoogle Scholar
  45. White, J. G., Rao, G. H., and Gerrard, J. M., 1974, Effects of ionophore A23187 in blood platelets. Am. J. Pathol. 77:135–149.PubMedGoogle Scholar
  46. Yamada, K. M., Yamada, S.S., and Pastan I., 1975, The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin,Proc. Natl. Acad. Sci. U.S.A. 72:3158–3162.PubMedCrossRefGoogle Scholar
  47. Zucker, M. B., Mosesson, M. W., Broekman, M. J., and Kaplan, K. L., 1979, Release of platelet fibronectin (cold insoluble globulin) from alpha granules induced by thrombin or collagen; lack of requirement for plasma fibronectin in ADP-induced platelet aggregation,Blood 54:8–12.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • T. Kent Gartner
    • 1
  1. 1.Department of BiologyMemphis State UniversityMemphisUSA

Personalised recommendations