Molecular Mechanisms of Platelet Adhesion and Platelet Aggregation

  • Ralph L. Nachman
  • Lawrence L. K. Leung
  • Margaret J. Polley


Certain primitive cell systems, such as cellular slime molds, exist either in unicellular vegetative forms or in a differentiated state in which they become adhesive and aggregate into a multicellular structure. An example of this mechanism of cellular behavior is shown in Figure 1, which illustrates the life cycle of Acrasis rosea, an acrasid cellular slime mold. The uninucleate ameboid cells move, divide by binary fission, deplete the local environment of the food supply, aggregate, and form fruiting bodies. The mechanisms associated with the development of the adhesive state have been studied most extensively in the dictyostelid cellular slime molds. When the cells of this species become adhesive, they synthesize surface polyvalent carbohydrate-binding proteins or lectins that mediate cell to cell adhesion (Frasier and Glaser, 1979; Barondes, 1981). This stage of the cell cycle is associated with activation of a large number of new genes (Blumberg et al., 1982), presumably coding for cell-surface proteins that mediate the conversion to the adhesive state. Cell adhesion culminating in aggregation takes place via the interaction of carbohydrate-binding sites of a cell-surface lectin with oligosaccharides on membrane glycoprotein receptors. The initial interaction of one lectin molecule with one receptor oligosaccharide followed by binding at multiple sites leads to rapid and stable cohesion (aggregation). Discoidin I and II, two closely related galactose-binding lectins synthesized by Dictyostelium dis coideum during the conversion from the noncohesive to the aggregating cohesive stage, may function at different stages of the aggregation process by binding to different oligosaccharide-containing receptors at the cell surface (Berger and Armant, 1982). Thus, at least in primitive systems, the aggregation process appears to involve the sequential exposure of a family of cell-surface recognition molecules, some of which serve as lectins. It is probable that human platelets may recapitulate some of these primitive cellular responses during the process of agonist-induced aggregation.


Platelet Aggregation Human Platelet Platelet Adhesion Platelet Membrane Fibrinogen Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barondes, S. H., 1981, Lectins: Their multiple endogenous cellular functions,Annu. Rev. Biochem 50:207–231.PubMedCrossRefGoogle Scholar
  2. Bennett, J. S., and Vilare, G., 1979, Exposure of platelet fibrinogen receptors by ADP and epinephrine, J.Clin. Invest. 64:1393–1401.PubMedCrossRefGoogle Scholar
  3. Berger, E. A., and Armant Randall, E., 1982, Discoidins I and II: Common and unique regions on two lectins implicated in cell-cell cohesion in Dictyostelium discoideum, Proc. Natl. Acad. Sci. U.S.A. 79:2162–2166.CrossRefGoogle Scholar
  4. Bemdt, M. C., Gregory, C., Chong, B. H., Zola, H., and Castaldi, P. A., 1983, Additional glycoprotein defects in Bemard-Soulier’s syndrome: Confirmation of genetic basis by parental analysis, Blood 62:800–807.Google Scholar
  5. Blumberg, D. D., Margolskee, J. P., Barklis, E., Chung, S. N., Cohen, N. S., and Lodish, H. F., 1982, Specific cell-cell contacts are essential for induction of gene expression during differentiation of Dictyostelium discoideum, Proc. Natl. Acad. Sci. U.S.A. 79:127–131.PubMedCrossRefGoogle Scholar
  6. Clemetson, K. J., McGregor, J. L., James, E., Dechavanne, M., and Luscher, E., 1982, Characterization of the platelet membrane glycoprotein abnormalities in Bemard-Soulier syndrome and comparison with normal by surface-labeling techniques and high resolution two-dimensional gel electrophoresis, J. Clin. Invest. 70:304–311.PubMedCrossRefGoogle Scholar
  7. Cohen, I., Glaser, T., and Seligsohn, U., 1975, Effect of ADT and ATP on bovine fibrinogen and ristocetin-induced platelet aggregation in Glanzman’s thrombasthenia, Br. J. Haematol. 31:343–347.PubMedCrossRefGoogle Scholar
  8. Counts, R. B., Poskell, S. L., and Elgee, S. K., 1978, Disulfide bonds and the quartemary structure of Factor VIII/von Willebrand factor, J. Clin. Invest. 62:702–709.PubMedCrossRefGoogle Scholar
  9. Frazier, W., and Glaser, L., 1979, Surface components and cell recognition, Annu. Rev. Biochem. 48:491–523.PubMedCrossRefGoogle Scholar
  10. Gartner, K. T., Gerrard, J. M., White, J. G., and Williams, D. C., 1981, Fibrinogen is the receptor for the endogenous lectin of human platelets. Nature (London) 289:688–690.CrossRefGoogle Scholar
  11. Ginsberg, M. H., Forsyth, J., Lightsey, A., Chediak, J., and Plow, E. F., 1983, Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets, J. Clin. Invest. 71:619–624.PubMedCrossRefGoogle Scholar
  12. Gralnick, H., and Coller, B., 1983, Platelets stimulated with thrombin and ADP bind von Willebrand factor to different sites than platelets stimulated with ristocetin, Clin. Res. 31:482A.Google Scholar
  13. Grant, R. A., Zucker, M. B., and McPherson, J., 1976, ADP-induced inhibition of von Willebrand factor-mediated platelet agglutination, Am. J. Physiol. 230:1406–1410.PubMedGoogle Scholar
  14. Hawiger, J., Timmons, S., Kloczewiak, M., Strong, D. D., and Doolittle, R. R., 1982, γ α chains of human fibrinogen possess sites reactive with human platelet receptors, Proc. Natl. Acad. Sci. U.S.A. 79:2068–2071PubMedCrossRefGoogle Scholar
  15. Jaffe, E. A., Hoyer, L., and Nachman, R. L., 1973, Synthesis of AHF antigens by cultured human endothelial cells, J. Clin. Invest. 52:2757–2764.PubMedCrossRefGoogle Scholar
  16. Jaffe, E. A., Leung, L. L. K., Nachman, R. L., Levin, R., and Mosher, D. F., 1982, Thrombospondin is the endogenous lectin of human platelets. Nature (London) 295:246–248.CrossRefGoogle Scholar
  17. Lehav, J., Schwartz, M. A., and Hynes, R. O., 1982, Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: Interaction of thrombospondin with fibronectin and collagen. Cell 31:253–262.CrossRefGoogle Scholar
  18. Lawler, J. W., Slater, H. S., and Coligan, J. E., 1978, Isolation and characterization of a high molecular weight glycoprotein from human platelets, J. Biol. Chem. 273:8609–8616.Google Scholar
  19. Lee, H., Nurden A., and Caen, J. P., 1981, Relationship between fibrinogen binding and the platelet glycoprotein deficiencies in Glanzmann’s thrombasthenia Type I and Type II, Br. J. Haematol. 48:47–57.PubMedCrossRefGoogle Scholar
  20. Leung, L. L. K., and Nachman, R. L., 1982, Complex formation of platelet thrombospondin with fibrinogen, Clin. Invest. 70:542–549.CrossRefGoogle Scholar
  21. Leung, L. L. K., Kinoshita, T., and Nachman, R. L., 1981, Isolation, purification, and partial characterization of platelet membrane glycoproteins lib and Ilia, J. Biol. Chem. 256:1994–1997.PubMedGoogle Scholar
  22. Marguerie, G. A., Plow, E. F., and Edgington, T. S., 1979, Human platelets possess an inducible and saturable receptor specific for fibrinogens, J. Biol. Chem. 254:5357–5363.PubMedGoogle Scholar
  23. Marguerie, G. A., Ardaillon, N., Cherel, G., and Plow, E. F., 1982, The binding of fibrinogen to its platelet receptor, J. Biol. Chem. 257:11872–11875.PubMedGoogle Scholar
  24. McEver, R. P., Bennett, E. M., and Martin, M. N., 1983, Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein Ilb-IIIa using monoclonal antibodies, J. Biol. Chem. 258:5264–5275.Google Scholar
  25. Nachman, R. L., 1982, von Willebrand’s disease: A clinical and molecular enigma. West. J. Med. 136:318–325.PubMedGoogle Scholar
  26. Nachman, R. L., and Leung, L. L. K., 1982, Complex formation of platelet membrane glycoproteins IIb and Illa with fibrinogens, J. Clin. Invest. 69:263–269.PubMedCrossRefGoogle Scholar
  27. Nachman, R. L., Jaffe, E. A., and Weksler, B. W., 1977, Immunoinhibition of ristocetin induced platelet aggregation, J. Clin. Invest. 59:143–148.PubMedCrossRefGoogle Scholar
  28. Nachman, R. L., Jaffe, E. A., Miller, C., and Brown, W. T., 1980a, Structural analysis of factor VIII antigen in von Willebrand’s disease, Proc. Nad. Acad. Sci. U.S.A. 77:6832–6836.CrossRefGoogle Scholar
  29. Nachman, R. L., Jaffe, E. A., and Ferris, B., 1980b, Peptide map analysis of normal plasma and platelet factor VIII antigen, Biocehm. Biophys. Res. Commun. 92:1208–1214.CrossRefGoogle Scholar
  30. Olive, L. S., 1975, The Mycetozoans, Academic Press, New York, p. 163.Google Scholar
  31. Over, J., Bouma, B. N., Sixma, J. J., Bolhuis, P. A., and Vlooswijk, R. A. A., 1980, Heterogeneity of human factor VIII-III. Transition between forms of factor VIII present in cryoprecipitate and in cryosupematant plasma, J. Lab. Clin. Med. 95:323–334.PubMedGoogle Scholar
  32. Peerschke, E. I., and Zucker, M. B., 1981, Fibrinogen receptor exposure and aggregation of human blood platelets produced by ADP and chilling. Blood 57:663–668.PubMedGoogle Scholar
  33. Phillips, D. R., Jennings, L. K., and Prasanna, H. R., 1980, Ca2+-mediated association of glycoprotein G (thrombin sensitive protein, thrombospondin) with human platelets, J. Biol. Chem. 255:11629–11632.PubMedGoogle Scholar
  34. Polley, M. J., Leung, L. L. K., Clark, F., and Nachman, R. L., 1981, Thrombin induced platelet membrane glycoprotein lib and Ilia complex formation: An electron microscope study, J. Exp. Med. 154:1058–1068.PubMedCrossRefGoogle Scholar
  35. Rand, J. H., Gordon, R. E., Sussman, I. I., Chu, S. V., and Solomon, V., 1982, Electron microscopic localization of a factor-VIII related antigen in adult human blood vessels. Blood 60:627–634.PubMedGoogle Scholar
  36. Ruan, C., Tobelem, G., McMichael, A. J., Drouet, L., Legrand, Y., Degos, L., Kieffer, N., Lee, H., and Caen, J. P., 1981, Monoclonal antibody to human platelet glycoprotein I, Br. J. Haematol. 49:511–519.PubMedCrossRefGoogle Scholar
  37. Ruggeri, Z. M., Bader, R., and De Marco, L., 1982, Glanzmann’s thrombasthenia: Deficient binding of von Willebrand factor to thrombin-stimulated platelets,Proc. Natl. Acad. Sci. U.S.A. 79:6038–6041.PubMedCrossRefGoogle Scholar
  38. Ruggeri, Z. M., Bader, R., and Zimmerman, T. S., 1983a, High affinity interaction of platelet von Willebrand factor with distinct platelet membrane sites, Clin. Res. 31:322A.Google Scholar
  39. Ruggeri, Z. M., De Marco, L., and Montgomery, R. R., 1983b, Platelets have more than one binding site for von Willebrand factor, Clin. Res. 31:322A.Google Scholar
  40. Wagner, D. D., and Marder, V. J., 1983, Biosynthesis of von Willebrand protein by human endothelial cells, J. Biol. Chem. 258:2065–2067.PubMedGoogle Scholar
  41. Weiss, H. J., Hoyer, L. W., Rickles, F. R., Varma, A., and Rogers, J., 1973, Quantitative assay of a plasma factor deficient in von Willebrand’s disease that is necessary for platelet aggregation. Relationship to factor VIII procoagulant activity and antigen content, J. Clin. Invest. 52:2708–2716.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Ralph L. Nachman
    • 1
  • Lawrence L. K. Leung
    • 1
  • Margaret J. Polley
    • 1
  1. 1.Division of Hematology-Oncology, Department of MedicineThe New York Hospital-Cornell Medical CenterNew YorkUSA

Personalised recommendations