Advertisement

Autoionization pp 135-170 | Cite as

Molecular Resonance Calculations Applications of Complex-Coordinate and Complex Basis Function Techniques

  • C. William McCurdy
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Resonances in low-energy (0–10eV) electron scattering from molecules have been observed in a large number of cases(1,2) with target molecules ranging in size from H2 to naphthalene (C10H8). In fact, almost every organic molecule containing a double bond displays at least one low-energy resonance.(2) The mechanism of formation for these low-energy resonances can be viewed in two superficially different, but essentially equivalent, ways, depending on whether we initially adopt the point of view of the atomic physicist or quantum chemist. From both points of view, most of the resonances below 5-eV incident energy in electron-molecule scattering can be thought of in the first approximation as “shape” resonances, that is, not involving electronic excitation of the target molecule.

Keywords

Trial Function Photoionization Cross Section Feshbach Resonance Complex Scaling Dissociative Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, G. J. Schulz, Rev. Mod. Phys. 45 378, 423 (1973); G. J. Schulz, in Principles of Laser Plasmas, (Bekefi, ed.), p. 33, Wiley, New York (1976).ADSCrossRefGoogle Scholar
  2. 2.
    K. D. Jordan and P. D. Burrow, Acc. Chem. Res. 11, 341 (1978).CrossRefGoogle Scholar
  3. 3.
    K. Fukui, Acc. Chem. Res. 4, 57 (1971).MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. D. Burrow, J. A. Michejda, and K. D. Jordan, unpublished; for another example, see K. D. Jordan, J. A. Michejda, and P. D. Burrow, J. Am. Chem. Soc. 98, 1295 (1976).CrossRefGoogle Scholar
  5. 5.
    D. T. Birtwistle and A. Herzenberg, J. Phys. B 4, 53 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    L. Dubé and A. Herzenberg, Phys. Rev. A 20, 194 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    R. K. Nesbet, Phys. Rev. A 19, 551 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    J. Aguilar and J. Combes, Commun. Math. Phys. 22, 269 (1971); E. Balslev and J. Combes, Combes, Commun. Math. Phys. 22, 280 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    See, for example, J. R. Taylor, Scattering Theory, (p. 221, Wiley, New York 1972).Google Scholar
  10. 10.
    See, for example, C. W. McCurdy, in Electron-Molecule and Photon-Molecule Collisions T. N. Rescigno, V. McKoy, and B. Schneider eds.), p. 229, Plenum, New York (1979).Google Scholar
  11. 11.
    G. D. Doolen, M. Hidalgo, J. Nuttall, and R. W. Stagat, in Atomic Physics (S. J. Smith and G. K. Walters, eds.), p. 257, Plenum, New York (1973); G. D. Doolen, J. Nuttall, and R. W. Stagat, Phys. Rev. A 10, 1612 (1974).Google Scholar
  12. 12.
    G. D. Doolen, J. Phys. B 8, 525 (1975).ADSCrossRefGoogle Scholar
  13. 13.
    E. Brändas and P. Froelich, Phys. Rev. A 16, 2207 (1977); and E. Brändas, P. Froelich, and M. Hehenberger, Int. J. Quantum Chem. 14, 419 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    R. Yaris and P. Winkler, J. Phys. B 11, 1475 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    P. R. Certain, Chem. Phys. Lett. 65, 71 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    N. Moiseyev, P. R. Certain, and F. Weinhold, Int. J. Quantum Chem. 65, 727 (1978); N. Moiseyev, P. R. Certain, and F. Weinhold, Mol. Phys. 36, 1613 (1978); and N. Moiseyev, S. Friedland, and P. R. Certain, J. Chem. Phys. 74, 4739 (1981).CrossRefGoogle Scholar
  17. 17.
    Y. K. Ho, Phys. Rev. A 23, 2137 (1981); and Y. K. Ho, Phys. Rev. A 19, 2349 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    T. N. Rescigno, C. W. McCurdy, and A. E. Orel, Phys. Rev. A 17, 1931 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    B. R. Junker and C. L. Huang, Phys. Rev. A 18, 313 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    B. Simon, Phys. Lett. 71A, 211 (1979).ADSGoogle Scholar
  21. 21.
    B. R. Junker, Phys. Rev. Lett. 44, 1487 (1980); and B. R. Junker, Int. J. Quantum Chem. 14S, 55 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    D. R. Herrick, F. H. Stillinger, J. Chem. Phys. 62, 4360 (1975); D. R. Herrick, J. Chem. Phys. 65, 3529 (1981). I am indebted to W. P. Reinhardt for having pointed out these references to me.ADSCrossRefGoogle Scholar
  23. 23.
    E. Brändas, P. Froelich, C. H. Obcemea, N. Elander, and M. Rittby, Phys. Rev. A 26, 3656 (1982).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Turner and C. W. McCurdy, Chem. Phys. 71, 127 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    C. W. McCurdy and T. N. Rescigno, Phys. Rev. Lett. 41, 1364 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    N. Moiseyev and C. T. Corcoran, Phys. Rev. A 20, 814 (1979).ADSCrossRefGoogle Scholar
  27. 27.
    C. W. McCurdy, Phys. Rev. A 21, 464 (1980).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    J. D. Morgan and B. Simon, unpublished.Google Scholar
  29. 29.
    C. W. McCurdy and T. N. Rescigno, Phys. Rev. A 21, 1499 (1980).ADSCrossRefGoogle Scholar
  30. 30.
    C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    E. R. Davidson and L. Z. Stenkamp, Int. J. Quantum Chem. 105, 21 (1976).Google Scholar
  32. 32.
    C. C. J. Roothaan and P. S. Bagus, Meth. Comput. Phys. 2, 47 (1976); see also Ref. 30.Google Scholar
  33. 33.
    C. W. McCurdy, T. N. Rescigno, E. R. Davidson, and J. G. Lauderdale, J. Chem. Phys. 73, 3268 (1980).ADSCrossRefGoogle Scholar
  34. 34.
    R. Lefebvre, in Modern Quantum Chemistry, part I (O. Sinanoglu, ed.), p. 125, Academic, New York (1965).Google Scholar
  35. 35.
    For a review, see A. C. Wahl and G. Das, in Methods of Electronic Structure Theory, Modern Theoretical Chemistry (H. F. Schaefer, ed.), p. 125, Academic, New York (1976).Google Scholar
  36. 36.
    L. Schlessinger, Phys. Rev. 167, 1411 (1968). Schlessinger’s algorithm is for constructing a Thiel continued fraction. For more discussion and references, see B. Jones and W. J. Thron, Continued Fractions, p. 393, Addison-Wesley, Reading, MA (1980).ADSCrossRefGoogle Scholar
  37. 37.
    M. Allan and S. F. Wong, Phys. Rev. Lett. 41, 1791 (198).Google Scholar
  38. 38.
    C. W McCurdy and R. C. Mowrey, Phys. Rev. A 25, 2529 (1982).ADSCrossRefGoogle Scholar
  39. 39.
    J. M. Wadehra and J. N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978); J. N. Bardsley and J. M. Wadehra, Phys. Rev. A 20, 1398 (1979).ADSCrossRefGoogle Scholar
  40. 40.
    J. C. Y. Chen and J. L. Peacher, Phys. Rev. 167, 30 (1968).ADSCrossRefGoogle Scholar
  41. 41.
    R. J. Bieniek and A. Dalgarno, Astrophys. J. 228, 635 (1979).ADSCrossRefGoogle Scholar
  42. 42.
    R. K. Nesbet, Comments At. Mol. Phys. 11, 25 (1981).Google Scholar
  43. 43.
    H. S. Taylor and F. E. Harris, J. Chem. Phys. 39, 1012 (1963); and I. Eliezer, H. S. Taylor and J. K. Williams, J. Chem. Phys. 47, 2165 (1967).ADSCrossRefGoogle Scholar
  44. 44.
    J. G. Lauderdale, C. W. McCurdy, and A. U. Hazi, J. Chem. Phys., 79, 2200 (1983).ADSCrossRefGoogle Scholar
  45. 45.
    W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).ADSCrossRefGoogle Scholar
  46. 46.
    T. N. Rescigno, A. E. Orel, and C. W. McCurdy, J. Chem. Phys. 73, 6347 (1980).ADSCrossRefGoogle Scholar
  47. 47.
    N. Chandra and A. Temkin, Phys. Rev. A 13, 188 (1976).ADSCrossRefGoogle Scholar
  48. 48.
    See. A. Temkin, in Electron-Molecule and Photon-Molecule Collisions T. N. Rescigno, V. McKoy and, B. Schneider, eds.), p. 173, Plenum, New York (1979).CrossRefGoogle Scholar
  49. 49.
    A. U. Hazi, T. N. Rescigno, and M. Kurilla, Phys. Rev. A 23, 1089 (1981).ADSCrossRefGoogle Scholar
  50. 50.
    B. I. Schneider, M. LeDourneuf, and Vo Ky Lan, Phys. Rev. Lett. 43, 1926 (1979).ADSCrossRefGoogle Scholar
  51. 51.
    D. A. Levin and V. McKoy, unpublished results reproduced in Ref. 49.Google Scholar
  52. 52.
    P. J. Hay, J. Chem. Phys. 76, 502 (1982).ADSCrossRefGoogle Scholar
  53. 53.
    R. A. Donnelly and J. Simons, J. Chem. Phys. 73, 2858 (1980).MathSciNetADSCrossRefGoogle Scholar
  54. 54.
    J. F. McNutt and C. W. McCurdy, Phys. Rev. A 27, 132 (1983).ADSCrossRefGoogle Scholar
  55. 55.
    A. Temkin, in Autoionization (A. Temkin ed.), p. 55, Mono, Baltimore (1966).Google Scholar
  56. 56.
    L. S. Cederbaum and W. Domcke, J. Phys. B 14, 4665 (1981).ADSCrossRefGoogle Scholar
  57. 57.
    C. W. McCurdy and J. L. Turner, J. Chem. Phys. 78, 6773 (1983).ADSCrossRefGoogle Scholar
  58. 58.
    A. D. Isaacson and W. H. Miller, Chem. Phys. Letts. 62, 394 (1979).ADSCrossRefGoogle Scholar
  59. 59.
    C. W. McCurdy and J. F. McNutt, Chem. Phys. Letts. 94, 306 (1983).ADSCrossRefGoogle Scholar
  60. 60.
    A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970), give a detailed treatment of the stabilization phenomenon.ADSCrossRefGoogle Scholar
  61. 61.
    T. C. Thompson and D. G. Truhlar, Chem. Phys. Letts. 92, 71 (1982).ADSCrossRefGoogle Scholar
  62. 62.
    R. C. Mowrey and C. W. McCurdy, unpublished results.Google Scholar
  63. 63.
    Y. Y. Bai, G. Hose, C. W. McCurdy, and H. S. Taylor, Chem. Phys. Letts., 99, 342 (1983).ADSCrossRefGoogle Scholar
  64. 64.
    B. R. Junker, private communication (1982).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. William McCurdy
    • 1
  1. 1.Department of ChemistryOhio State UniversityColumbusUSA

Personalised recommendations