Advertisement

Hole-Projection Method for Calculating Feshbach Resonances and Inner-Shell Vacancies

  • Kwong T. Chung
  • Brian F. Davis
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Inner-shell vacancy states play an important role in understanding quantum systems. Experimentally, they appear in the form of a discrete spectrum that is embedded in the continuum. In most cases, they are coupled to the continuum via the Coulomb interaction, although this coupling may be very weak, so that the energy level and wave function can be obtained approximately by using square-integrable basis functions. This coupling can cause considerable difficulty in the theoretical treatment of these states. These vacancy states can be formed in atomic, molecular, nuclear, and solid systems. They arise in various physical processes; for example, in resonant or nonresonant collisions, photoabsorption, nuclear decay, or elementary particle capture, etc. Once formed, they may decay by inner-shell or outer-shell autoionization, Coster-Kronig transition, x-ray emission, etc.(1) The application of these effects covers a wide range of disciplines in physics and electronics as well as medical and geophysical sciences.

Keywords

Wave Function Partial Wave Laguerre Polynomial Lithium Atom Secular Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review, see W. Bambynek, B. Crasemann, R. W. Fink, H. V. Freund, H. Mark, C. D. Swift, R. E. Price, P. V. Rao, Rev. Mod. Phys. 44, 716 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    T. Y. Wu, Phys. Rev. 46, 239 (1934); 66, 291 (1944).ADSCrossRefGoogle Scholar
  3. 3.
    P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).ADSCrossRefGoogle Scholar
  4. 4.
    U. Fano, Phys. Rev. 124, 1866 (1961).ADSMATHCrossRefGoogle Scholar
  5. 5.
    H. Feshbach, Ann. Phys. 5, 357 (1958); 19, 287 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    G. K. Bhatia, A. Temkin, and I. J. Perkins, Phys. Rev. 153, 177 (1967); and A. K. Bhatia and A. Temkin, Phys. Rev. 182, 15 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    K. T. Chung and J. C. Y. Chen, Phys. Rev. Lett. 27, 1112 (1971); Phys. Rev. A13, 1655 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    G. J. Seiler, R. S. Oberoi, and J. Callaway, Phys. Rev. A 3, 2006 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    A. L. Sinfailam and R. K. Nesbet, Phys. Rev. A 6, 2118 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    P. G. Burke, J. W. Cooper, and S. Ormonde, Phys. Rev. 183, 245 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    J. Macek, J. Phys. B 1, 831 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    E. Balslev and J. M. Combes, Commun. Math. Phys. 22, 280 (1971).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    A. U. Hazi and H. S. Taylor, Phys. Rev. A 1, 1109 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    A. Temkin, A. K. Bhatia, and J. N. Bardsley, Phys. Rev. A 5, 1663 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    K. T. Chung, Phys. Rev. A 20, 1743 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    E. Merzbacher, Quantum Mechanics, 2d ed., p. 315, Wiley, New York (1970).Google Scholar
  17. 17.
    See, for example, A. Weinsein and W. Stenger, Methods of Intermediate Problems for Eigenvalues, Academic, New York (1972).Google Scholar
  18. 18.
    J. K. L. MacDonald, Phys. Rev. 43, 830 (1933).ADSCrossRefGoogle Scholar
  19. 19.
    B. F. Davis and K. T. Chung, Phys. Rev. A 22, 835 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Accad, C. L. Pekeris, and B. Schiff, Phys. Rev. A 4, 516 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Hahn, T. F. O’Malley, and L. Spruch, Phys. Rev. 128, 932 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms, p. 168, Springer-Verlag, Berlin (1957).MATHGoogle Scholar
  23. 23.
    M. E. Rudd, Phys. Rev. Lett. 15, 580 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    N. Oda, F. Nishimura, and S. Tahira, Phys. Rev. Lett. 24, 42 (1970).ADSCrossRefGoogle Scholar
  25. 25.
    J. Comer and F. H. Reed, J. Electron. Spectrosc. Relat. Phenom. 1, 3 (1972).CrossRefGoogle Scholar
  26. 26.
    A. Bordenave-Montesquieu, A. Gleizes, M. Rodiere, and P. Benoit-Cattin, J. Phys. B 6, 1997 (1973).ADSCrossRefGoogle Scholar
  27. 27.
    P. J. Hicks and J. Comer, J. Phys. B 8, 1866 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    F. Gelebart, R. J. Tweed, and J. Peresse, J. Phys. B 9, 1739 (1976).ADSCrossRefGoogle Scholar
  29. 29.
    K. Siegbahn ESCA Applied to Free Molecules, North-Holland, Amsterdam (1969).Google Scholar
  30. 30.
    A. Bordenave-Montesquieu and P. Benoit-Cattin, C. R. H., Acad. Sci. Ser. B. 272, 1473 (1971).Google Scholar
  31. 31.
    A. K. Bhatia and A. Temkin, Phys. Rev. A 11, 2018 (1975).ADSCrossRefGoogle Scholar
  32. 32.
    Y. K. Ho, Phys. Rev. A 23, 2137 (1981).ADSCrossRefGoogle Scholar
  33. 33.
    P. G. Burke, in Advances in Atomic and Molecular Physics, vol. 4 (D. R. Bates and I. Estermann, eds.) p. 173, Academic, New York (1968).Google Scholar
  34. 34.
    A. K. Bhatia, A. Temkin, and J. F. Perkins, Ref. 6ADSCrossRefGoogle Scholar
  35. 35.
    E. Holølen and J. Midtdal, J. Phys. B 3, 592 (1970).ADSCrossRefGoogle Scholar
  36. 36.
    P. G. Burke and D. D. McVicar, Proc. Phys. Soc. London 86, 989 (1965).ADSCrossRefGoogle Scholar
  37. 37.
    Y. K. Ho, J. Phys. B 12, 387 (1979).ADSCrossRefGoogle Scholar
  38. 38.
    P. G. Burke and A. J. Taylor, J. Phys. B 2, 44 (1969).ADSCrossRefGoogle Scholar
  39. 39.
    R. P. Madden and K. Codling, Astrophys. J. 141, 364 (1965).ADSCrossRefGoogle Scholar
  40. 40.
    P. Dhez and D. L. Ederer, J. Phys. B 6, L59 (1973).ADSCrossRefGoogle Scholar
  41. 41.
    B. F. Davis and K. T. Chung, Phys. Rev. A 26, 2743 (1982).ADSCrossRefGoogle Scholar
  42. 42.
    Y. K. Ho, J. Phys. B 12, L543 (1979); Phys. Lett. 79A, 44 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    D. R. Herrick and O. Sinanoglu, Phys. Rev. A 11, 97 (1975).ADSCrossRefGoogle Scholar
  44. 44.
    R. S. Oberoi, J. Phys. B 5, 1120 (1972).ADSCrossRefGoogle Scholar
  45. 45.
    P. R. Woodruff and J. A. R. Samson, Phys. Rev. A 25, 848 (1982).ADSCrossRefGoogle Scholar
  46. 46.
    D. E. Golden, in. Advances in Atomic and Molecular Physics, vol. 14 (D. R. Bates and B. Bederson, eds.), p. 1, Academic, New York (1978), and the references therein.Google Scholar
  47. 47.
    B. R. Junker and C. L. Huang, Phys. Rev. A 18, 313 (1978), and the references therein.ADSCrossRefGoogle Scholar
  48. 48.
    K. T. Chung, Phys. Rev. A 23, 1079 (1981).ADSCrossRefGoogle Scholar
  49. 49.
    R. S. Oberoi and R. K. Nesbet, Phys. Rev. A 8, 2969 (1973); R. K. Nesbet, Phys. Rev. A 12, 444 (1975).ADSCrossRefGoogle Scholar
  50. 50.
    P. G. Burke, J. W. Cooper, and S. Ormonde, Phys. Rev. 183, 245 (1969); W. C. Fon, J. Phys. B 11, 325 (1978).ADSCrossRefGoogle Scholar
  51. 51.
    A. K. Bhatia and A. Temkin, Phys. Rev. A 23, 3361 (1981).ADSCrossRefGoogle Scholar
  52. 52.
    F. M. J. Pichanick and J. A. Simpson, Phys. Rev. 168, 64 (1968).ADSCrossRefGoogle Scholar
  53. 53.
    J. N. H. Brunt, G. C. King, and F. H. Read, J. Phys. B 10, 433 (1977).ADSCrossRefGoogle Scholar
  54. 54.
    H. Ehrhardt and K. Willmann, Z. Phys. 203, 1 (1967).ADSCrossRefGoogle Scholar
  55. 55.
    J. M. Phillips and S. F. Wong, Phys. Rev. A 23, 3324 (1981).ADSCrossRefGoogle Scholar
  56. 56.
    C. E. Kuyatt, J. A. Simpson, and S. R. Mielczark, Phys. Rev. A 138, 385 (1965).ADSGoogle Scholar
  57. 57.
    U. Fano and J. W. Cooper, Phys. Rev. A. 138, 400 (1965).ADSGoogle Scholar
  58. 58.
    K. T. Chung, Phys. Rev. A 22, 1341 (1980), and the references therein.ADSCrossRefGoogle Scholar
  59. 59.
    J. T. Grissom, R. N. Compton, and W. R. Garrett, Phys. Lett. 30, 117 (1969).CrossRefGoogle Scholar
  60. 60.
    P. J. Hicks, C. Cvejanovic, J. Comer, F. H. Read, and J. M. Sharp, Vacuum 24, 573 (1974).CrossRefGoogle Scholar
  61. 61.
    See, for example, F. H. Read, J. Phys. B L10, 207 (1977).ADSCrossRefGoogle Scholar
  62. 62.
    K. T. Chung, Phys. Rev. A 20, 724 (1979).ADSCrossRefGoogle Scholar
  63. 63.
    D. L. Ederer, T. Lucatorto, and R. P. Madden, Phys. Rev. Lett. 25, 1537 (1970).ADSCrossRefGoogle Scholar
  64. 64.
    A. M. Cantu et al. J. Opt. Soc. Am. 67, 1030 (1977).ADSCrossRefGoogle Scholar
  65. 65.
    T. J. McIlrath and T. B. Lucatorto, Phys. Rev. Lett. 38, 1390 (1977).ADSCrossRefGoogle Scholar
  66. 66.
    K. T. Chung, Phys. Rev. A 23, 2957 (1981); Phys. Rev. A 24, 1350 (1981).ADSCrossRefGoogle Scholar
  67. 67.
    D. Pegg, Phys. Rev. A 12, 1330 (1975).ADSCrossRefGoogle Scholar
  68. 68.
    P. Ziem, R. Bruch, and N. Stolterfoht, J. Phys. B 8, L480 (1975).ADSCrossRefGoogle Scholar
  69. 69.
    D. Rassi, V. Pejcev, and K. J. Ross, J. Phys. B 10, 3535 (1977).ADSCrossRefGoogle Scholar
  70. 70.
    M. Rødbro, R. Bruch, and P. Bisgaard, J. Phys. B 12, 2413 (1979).ADSCrossRefGoogle Scholar
  71. 71.
    A. K. Bhatia and A. Temkin, Phys. Rev. A 13, 2322 (1976).ADSCrossRefGoogle Scholar
  72. 72.
    A. K. Bhatia, Phys. Rev. A 18, 2523 (1978).ADSCrossRefGoogle Scholar
  73. 73.
    A. W. Weiss, quoted in Ref. 65.Google Scholar
  74. 74.
    U. I. Safronova and V. S. Senashenko, J. Phys. B 11, 2623 (1978).ADSCrossRefGoogle Scholar
  75. 75.
    R. L. Simons, H. P. Kelly, and R. Bruch, Phys. Rev. A 19, 682 (1979).ADSCrossRefGoogle Scholar
  76. 76.
    M. Ahmed and L. Lipsky, Phys. Rev. A 12, 1176 (1975).ADSCrossRefGoogle Scholar
  77. 77.
    C. A. Nicolaides and D. R. Beck, J. Chem. Phys. 66, 1982 (1977).ADSCrossRefGoogle Scholar
  78. 78.
    K. T. Chung, Phys. Rev. A 25, 1596 (1982).ADSCrossRefGoogle Scholar
  79. 79.
    B. F. Davis and K. T. Chung, J. Phys. B 15, 3113 (1982).ADSCrossRefGoogle Scholar
  80. 80.
    K. T. Chung and B. F. Davis, Phys. Rev. A 26, 3278 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kwong T. Chung
    • 1
  • Brian F. Davis
    • 1
  1. 1.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations