Advertisement

Effect of Insulin on the Membrane Potentials of Rat White Epididymal Fat Cells

  • Roger J. Davis
  • B. Richard Martin

Abstract

Insulin produces a number of rapid changes in the membrane transport processes of fat cells. Examples are the stimulation of the transport of glucose,(1) amino acids,(2) potassium,(3,4) calcium,(5) and phosphate.(6) It is possible that the changes in the ionic balance caused by insulin may play a role in mediating or maintaining some of the effects of insulin. An understanding of ionic transport by mechanisms that are electrogenic or electrophoretic requires a knowledge of the electrical potential across the plasma membrane. We have therefore studied the electrical potentials across the plasma membrane as well as the organelle membranes of fat cells stimulated by insulin.

Keywords

Membrane Potential Mitochondrial Membrane Potential Diffusion Potential Sodium Pump Insulin Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Czech, M.P., 1980, Diabetes 29: 399–409.PubMedGoogle Scholar
  2. 2.
    Guidotti, G., Borghetti, A.F., and Gazzola, G.C., 1978, Biochim. Biophys. Acta 515: 329–366.PubMedGoogle Scholar
  3. 3.
    Gourley, D.R.H., and Bethea, M.D., 1964, Proc. Soc. Exp. Biol. Med. 115: 821–823.PubMedGoogle Scholar
  4. 4.
    Resh, M.D., Nemenoff, R.A., and Guidotti, G., 1980, J. Biol. Chem. 255: 10938–10945.PubMedGoogle Scholar
  5. 5.
    Clausen, T., and Martin, B.R., 1977, Biochem. J. 164: 251–255.PubMedGoogle Scholar
  6. 6.
    Clausen, T., 1977, FEBS Meet. 229–238.Google Scholar
  7. 7.
    Krishna, G., Mosowitz, J., Dempsey, P., and Brodie, B.B., 1970, Life Sci. 9 (1): 1353–1361.CrossRefGoogle Scholar
  8. 8.
    Cheng, K., Haspel, H.C., Vallano, M.L., Osotimehin, B., and Sonnenberg, M., 1980, J. Membr. Biol. 56: 191–201.PubMedCrossRefGoogle Scholar
  9. 9.
    Lassen, U.V., Nielsen, A.M.T., Pape, L., and Simonsen, L.O., 1971, J. Membr. Biol. 6: 269–288.CrossRefGoogle Scholar
  10. 10.
    Beigelman, P.M., and Hollander, P.B., 1962, Proc. Soc. Exp. Biol. Med. 110: 590–595.PubMedGoogle Scholar
  11. 11.
    Beigelman, P.M., and Hollander, P.B., 1963, Diabetes 12: 262–267.PubMedGoogle Scholar
  12. 12.
    Beigelman, P.M., and Hollander, P.B., 1964, Proc. Soc. Exp. Biol. Med. 115: 14–16.PubMedGoogle Scholar
  13. 13.
    Beigelman, P.M., and Hollander, P.B., 1964, Proc. Soc. Exp. Biol. Med. 116: 31–35.PubMedGoogle Scholar
  14. 14.
    Beigelman, P.M., and Hollander, P.B., 1965, Acta Endocrinol. (Copenh.) 50: 648–656.Google Scholar
  15. 15.
    Miller, L.V., Schlosser, G.H., and Beigelman, P.M., 1966, Biochim. Biophys. Acta 112: 375–376.PubMedCrossRefGoogle Scholar
  16. 16.
    Beigelman, P.M., and Shu, M.J., 1972, Proc. Soc. Exp. Biol. Med. 141: 618–621.PubMedGoogle Scholar
  17. 17.
    Starke, R.J., Read, P.D., and O’Doherty, 1980, Diabetes 29: 1040–1043.CrossRefGoogle Scholar
  18. 18.
    Bashford, C.L., and Smith, J.C. 1979, Methods Enzymol. LV:569–586.Google Scholar
  19. 19.
    Waggoner, A.S., 1979, Annu. Rev. Biophys. Bioeng. 8: 47–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Skulachev, V.P., 1971, Curr. Top. Bioenerg. 4: 127–190.Google Scholar
  21. 21.
    Cafiso, D.S., and Hubbell, W.L., 1981, Annu. Rev. Biophys. Bioeng. 10: 245–276.CrossRefGoogle Scholar
  22. 22.
    Davis, R.J., Brand, M.D., and Martin, B.R., 1981, Biochem. J. 196: 133–147.PubMedGoogle Scholar
  23. 23.
    Deutsch, C., Erecinska, M., Werrlein, R., and Silver, I.A., 1979, Proc. Natl. Acad. Sci. USA 76: 2175–2179.PubMedCrossRefGoogle Scholar
  24. 24.
    Hoek, J.B., Nicholls, D.G., and Williamson, J.R., 1980, J. Biol. Chem. 255: 1458–1464.PubMedGoogle Scholar
  25. 25.
    Scott, I.D., and Nicholls, D.G., 1980, Biochem. J. 186: 21–33.PubMedGoogle Scholar
  26. 26.
    Felber, S.M., and Brand, M.D., 1982, Biochem. J. 204: 577–585.PubMedGoogle Scholar
  27. 27.
    Johnson, L.V., Walsh, M.L., and Chen, L.B., 1980, Proc. Natl. Acad. Sci. USA 77: 990–994.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnson, L.V., Walsh, M.L., Bockus, B.J., and Chen, L.B., 1981, J. Cell Biol. 88: 526–535.PubMedCrossRefGoogle Scholar
  29. 29.
    Rink, T.J., Montecucco, C., Hesketh, T.R., and Tsien, R.Y., 1980, Biochim. Biophys. Acta 595: 15–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Davis, R.J., and Martin, B.R. (in preparation).Google Scholar
  31. 31.
    Davis, R.J., and Martin, B.R., 1982, Biochem. J. 206: 611–618.PubMedGoogle Scholar
  32. 32.
    Davis, R.J., 1982, Ph.D. Thesis, University of Cambridge, Great Britain.Google Scholar
  33. 33.
    Goldman, D.E., 1943, J. Gen. Physiol. 27: 37–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Hodgkin, A.L., and Katz, B., 1949, J. Physiol. (Lond.) 108: 37–77.Google Scholar
  35. 35.
    Thomas, R.C., 1972, Physiol. Rev. 52: 563–594.PubMedGoogle Scholar
  36. 36.
    Trachtenberg, M.C., Packey, D.G., and Sweeney, T., 1981, Curr. Top. Membr. Transp. 19: 159–218.Google Scholar
  37. 37.
    Feldherr, C., 1973, Experientia 29: 546–547.PubMedCrossRefGoogle Scholar
  38. 38.
    Palmer, L.G., and Civan, M.M., 1975, Science 188: 1321–1322.PubMedCrossRefGoogle Scholar
  39. 39.
    Palmer, L.G., and Civan, M.M., 1977, J. Membr. Biol. 33: 41–61.PubMedCrossRefGoogle Scholar
  40. 40.
    Civan, M.M., 1978, Am. J. Physiol. 234 (4): F261 - F269.PubMedGoogle Scholar
  41. 41.
    Reijngoud, D.J., and Tager, J.M., 1977, Biochim. Biophys. Acta 472: 419–449.PubMedGoogle Scholar
  42. 42.
    Mitchell, P., and Moyle, J., 1969, Eur. J. Biochem. 7: 471–484.PubMedCrossRefGoogle Scholar
  43. 43.
    Zierler, K.L., 1957, Science 126: 1067–1068.PubMedCrossRefGoogle Scholar
  44. 44.
    Davis, R.J., and Martin, B.R. (in preparation).Google Scholar
  45. 45.
    Zierler, K.L., 1959, Am. J. Physiol. 197: 515–523.PubMedGoogle Scholar
  46. 46.
    Friedmann, N., and Dambach, G., 1980, Biochim. Biophys. Acta 596: 180–185.PubMedCrossRefGoogle Scholar
  47. 47.
    Petrozzo, P., and Zierler, K.L., 1976, Fed. Proc. Biol. 35: 602.Google Scholar
  48. 48.
    Cheng, K., Groarke, J., Osotimehin, B., Haspel, H.C., and Sonnenberg, M., 1981, J. Biol. Chem. 256: 649–655.PubMedGoogle Scholar
  49. 49.
    Goodman, D.S., 1958, J. Am. Chem. Soc. 80: 3892–3898.CrossRefGoogle Scholar
  50. 50.
    Moore, R.D., 1983, Biochim. Biophys. Acta 737: 1–49.PubMedGoogle Scholar
  51. 51.
    Hepp, D., Challoner, D.R., and Williams, R.H., 1968, 243: 4020–4026.Google Scholar
  52. 52.
    Jungas, R.L., and Ball, E.G., 1963, Biochemistry 2: 383–388.CrossRefGoogle Scholar
  53. 53.
    Nicholls, D.G., 1982, in: Bioenergetics: An Introduction to the Chemiosmotic Theory, Academic Press, New York, pp. 22–56.Google Scholar
  54. 54.
    Davis, R.J., and Martin, B.R., 1982, Biochem. J. 206: 619–626.PubMedGoogle Scholar
  55. 55.
    Levenson, R., Macara, LG., Smith, R.L., Cantley, L., and Housman, D., 1982, Cell 28: 855–863.PubMedCrossRefGoogle Scholar
  56. 56.
    Darzynkiewicz, Z., Staiano-Coico, L., and Melamed, M.R., 1981, Proc. Natl. Acad. Sci. USA 78: 2383–2387.PubMedCrossRefGoogle Scholar
  57. 57.
    Goldstein, S., and Korczack, L.B., 1981, J. Cell Biol. 91: 392–398.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Roger J. Davis
    • 1
  • B. Richard Martin
    • 2
  1. 1.Department of BiochemistryUniversity of Massachusetts Medical CenterWorcesterUSA
  2. 2.Department of BiochemistryUniversity of CambridgeCambridgeEngland

Personalised recommendations