Insulin Action on Membrane Components: The Glucose Transporter and the Type II Insulinlike Growth Factor Receptor

  • Yoshitomo Oka
  • Michael P. Czech

Abstract

It has been known for more than three decades that a major cellular target of insulin action is glucose transport activity.(1,2) In two major target tissues—muscle and fat—insulin action on hexose transport occurs within minutes and results in up to 10-fold stimulations (for reviews, see ref. 3 and 4). The insulin-responsive glucose transport systems are of the facilitated diffusion type, while the Na+-dependent, active glucose transport systems appear not to be insulin sensitive. Interestingly, in most cell types other than muscle and fat containing glucose transporters that operate by a facilitated diffusion mechanism, insulin appears to have little or no effect on glucose transport. Nevertheless, the effect of insulin on glucose uptake in muscle and adipose tissue contributes significantly to the hypoglycemic effect of insulin in intact animals and man. Therefore, the underlying biochemical mechanism of insulin action on hexose transport is of clear physiological and clinical significance.

Keywords

Insulin Action Scatchard Analysis Hexose Transporter Plasma Membrane Fraction Photoaffinity Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levine, R., Goldstein, M.S., Klein, S.P., and Huddlestun, B., 1949, J. Biol. Chem. 179: 985–986.PubMedGoogle Scholar
  2. 2.
    Levine, R., Goldstein, M.S., Huddlestun, B., and Klein, S.P., 1950, Am. J. Physiol. 163: 70–76.PubMedGoogle Scholar
  3. 3.
    Morgan, H.E., and Whitfield, C.F., 1973, Curr. Top. Membr. Transp. 4: 255–303.CrossRefGoogle Scholar
  4. 4.
    Czech, M.P., 1980, Diabetes 29: 399–409.PubMedGoogle Scholar
  5. 5.
    Czech, M.P., Lawrence, J.C., Jr., and Lynn, W.S., 1974, J. Biol. Chem. 249: 1001–1006.PubMedGoogle Scholar
  6. 6.
    Czech, M.P., Lawrence, J.C., and Lynn, W.S., 1974, Proc. Natl. Acad. Sci. USA 71: 4173–4177.PubMedCrossRefGoogle Scholar
  7. 7.
    Kono, T., and Barham, F.W., 1971, J. Biot. Chem. 246: 6204–6209.Google Scholar
  8. 8.
    Czech, M.P., and Lynn, W.S., 1973, Biochim. Biophys. Acta 297: 368–377.PubMedCrossRefGoogle Scholar
  9. 9.
    Czech, M.P., Lawrence, J.C., and Lynn, W.S., 1974, J. Biol. Chem. 249: 7499–7505.PubMedGoogle Scholar
  10. 10.
    Cuatrecasas, P., and Tell, G.P.E., 1973, Proc. Natl. Acad. Sci. USA 70: 485–489.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenthal, J.W., and Fain, J.N., 1971, J. Biol. Chem. 246: 5888–5895.PubMedGoogle Scholar
  12. 12.
    Cuatrecasas, P., and Illiano, G., 1971, J. Biol. Chem. 246: 4938–4946.PubMedGoogle Scholar
  13. 13.
    Fain, J.N., 1968, Endocrinology 83: 548–554.PubMedCrossRefGoogle Scholar
  14. 14.
    Shanahan, M.F., and Czech, M.P., 1977, J. Biol. Chem. 252: 8341–8343.PubMedGoogle Scholar
  15. 15.
    Carter-Su, C., Pilch, P.F., and Czech, M.P., 1981, Biochemistry 20: 216–221.PubMedCrossRefGoogle Scholar
  16. 16.
    Martin, D.B., and Carter, J.R., 1970, Science 167: 873–874.PubMedCrossRefGoogle Scholar
  17. 17.
    Suzuki, K., and Kono, T., 1980, Proc. Natl. Acad. Sci. USA 77: 2542–2545.PubMedCrossRefGoogle Scholar
  18. 18.
    Cushman, S.W., and Wardzala, L.J., 1980, J. Biol. Chem. 255: 4758–4762.PubMedGoogle Scholar
  19. 19.
    Karnieli, E., Zarnowski, M.J., Hissin, P.J., Simpson, I.A., Salans, L.B., and Cushman, S.W., 1981, J. Biol. Chem. 256: 4772–4777.PubMedGoogle Scholar
  20. 20.
    Kono, T., Robinson, F.W., Blevins, T.L., and Ezaki, O., 1982, J. Biol. Chem. 257: 10942–10947.PubMedGoogle Scholar
  21. 21.
    Hoessli, D.C., and Rungger-Brandle, E., 1983, Proc. Natl. Acad. Sci. USA 80: 439–443.PubMedCrossRefGoogle Scholar
  22. 22.
    Zapf, J., Schoenle, E., and Froesch, E.R., 1978, Eur. J. Biochem. 87: 285–296.PubMedCrossRefGoogle Scholar
  23. 23.
    King, G.L., Kahn, C.R., Rechler, M.M., and Nissley, S.P., 1980, J. Clin. Invest. 66: 130–140.PubMedCrossRefGoogle Scholar
  24. 24.
    Oppenheimer, C.L., Pessin, J.E., Massague, J., Gitomer, W., and Czech, M.P., 1983, J. Biol. Chem. 258: 4824–4830.PubMedGoogle Scholar
  25. 25.
    Massague, J., Guillette, B.J., and Czech, M.P., 1981, J. Biol. Chem. 256: 2122–2125.PubMedGoogle Scholar
  26. 26.
    Massague, J., and Czech, M.P., 1982, J. Biol. Chem. 257: 5038–5045.PubMedGoogle Scholar
  27. 27.
    Kasuga, M., Van Obberghen, E., Nissley, S.P., and Rechler, M.M., 1981, J. Biol. Chem. 256: 5305–5308.PubMedGoogle Scholar
  28. 28.
    Oppenheimer, C.L., and Czech, M.P., 1983, J. Biol. Chem. 258: 8539–8542.PubMedGoogle Scholar
  29. 29.
    August, G.P., Nissley, S.P., Kasuga, M., Lee, L., Greenstein, L., and Recher, M.M., 1983, J. Biol. Chem. 258: 9033–9036.PubMedGoogle Scholar
  30. 30.
    Czech, M.P., 1984, Rec. Prog. Horm. Res. 40: 347–377.PubMedGoogle Scholar
  31. 31.
    Wheeler, T.J., Simpson, I.A., Sogin, D.C., Hinkle, P.C., and Cushman, S.W, 1982, Biochem. Biophys. Res. Commun. 105: 89–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Lienhard, G.E., Kim, H.H., Ransome, K.J., and Gorga, J.C., 1982, Biochem. Biophys. Res. Commun. 105: 1150–1156.PubMedCrossRefGoogle Scholar
  33. 33.
    Czech, M.P., Lynn, D.G., and Lynn, W.S., 19783, J. Biol. Chem. 248: 3636–3641.Google Scholar
  34. 34.
    Lin, S., and Spudich, J.A., 1974, J. Biol. Chem. 249: 5778–5783.PubMedGoogle Scholar
  35. 35.
    Wardzala, L.J., Cushman, S.W., and Salans, L.B., 1978, J. Biol. Chem. 253: 8002–8005.PubMedGoogle Scholar
  36. 36.
    Carter-Su, C., Dessin, J.E., Mora, R., Gitomer, W., and Czech, M.P., 1982, J. Biol. Chem. 257: 5419–5425.PubMedGoogle Scholar
  37. 37.
    Dessin, J.E., Tillotson, L.G., Yamada, K., Gitomer, W., Carter-Su, C., Mora, R., Isselbacher, K.J., and Czech, M.P., 1982, Proc. Natl. Acad. Sci. USA 79: 2286–2290.CrossRefGoogle Scholar
  38. 38.
    Oka, Y., and Czech, M.P., in Methods in Diabetes Research. (S.L. Pohl and J. Lamer, eds.), Wiley, New York (in press).Google Scholar
  39. 39.
    Shanahan, M.F., Olsen, S.A., Weber, J.J., Lienhard, G.E., and Gorga, J.C., 1982, Biochem. Biophys. Res. Commun. 107: 38–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Oka, Y., and Czech, M.P., 1984, J. Biol. Chem. 259: 8125–8133.PubMedGoogle Scholar
  41. 41.
    McKeel, D.W., and Jarett, L., 1970, J. Cell. Biol. 44: 417–432.PubMedCrossRefGoogle Scholar
  42. 42.
    Baker, G.F., and Widdas, W.F., 1973, J. Physiol. (Loud.) 231: 129–142.Google Scholar
  43. 43.
    Holman, G.D., and Rees, W.D., 1982, Biochem. Biophys. Acta 685: 78–86.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorga, F.R., and Lienhard, G.E., 1981, Biochemistry 20: 5108–5113.PubMedCrossRefGoogle Scholar
  45. 45.
    King, G.L., Rechler, M.M., and Kahn, C.R., 1982, J. Biol. Chem. 257: 10001–10006.PubMedGoogle Scholar
  46. 46.
    Oka, Y., Mottola, C., Oppenheimer, C.L., and Czech,M.P., 1984, Proc. Natl. Acad. Sci. USA 81: 4028–4032.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Yoshitomo Oka
    • 1
  • Michael P. Czech
    • 1
  1. 1.Department of BiochemistryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations