Insulin-Dependent Apparent Translocation of Glucose Transport Activity: Studies by the Reconstitution Method

  • Tetsuro Kono


Nearly a decade ago, we found that when rat epididymal adipocytes were exposed to [125I]iodoinsulin for 10 min at 37°C, 125I activity would associate with two subcellular structures that could be fractionated by sucrose density-gradient centrifugation into the plasma membrane fraction (peak 1) and a low-density microsomal fraction (peak 2).(1) The latter peak (peak 2 of 125I activity) was later identified as the peak of the internalized hormone.(2,3) During this study, however, we noticed several similarities between the characteristics of the peak 2 formation, i,e., the endocytotic internalization of the hormone-receptor complex, and those of the hormonal action on glucose transport. Thus, both reactions are very slow at a low temperature, such as 15°C,(2) both reactions require adenosine triphosphate (ATP) not only for their development(2,3) but also for their reversal,(4,5) and both reactions are completed in approximately 5–10 min at 37°C when the hormone concentration is 1 nM.(2,6) We therefore postulated as a working hypothesis that the complex of glucose and its transport carrier might be co-internalized along with the insulin-receptor complex. In theory, one can test this working hypothesis by measuring the distribution of glucose transport activity in subcellular fractions obtained from the basal and plus-insulin states of adipocytes using the aforementioned sucrose density-gradient centrifugation.


Subcellular Fraction Insulinlike Effect Glucose Transport Activity States Public Health Service Grant Basal Glucose Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kono, T., Robinson, F.W., and Sarver, J.A., 1975, J. Biol. Chem. 250: 7826–7835.PubMedGoogle Scholar
  2. 2.
    Kono, T., Robinson, F.W., Sarver, J.A., Vega, F.V., and Pointer, R.H., 1977 J. Biol. Chem. 252: 2226–2233.PubMedGoogle Scholar
  3. 3.
    Suzuki, K., and Kono, T., 1979, J. Biol. Chem. 254: 9786–9794.PubMedGoogle Scholar
  4. 4.
    Kono, T., Vega, F.V., Raines, K.B., and Shumway, S.J., 1977, Fed. Proc. 36: 341.Google Scholar
  5. 5.
    Vega, F.V., Key, R.J., Jordan, J.E., and Kono, T., 1980, Arch. Biochem. Biophys. 203: 167–173.PubMedCrossRefGoogle Scholar
  6. 6.
    Vega, F.V., and Kono, T., 1979, Arch. Biochem. Biophys. 192: 120–127.PubMedCrossRefGoogle Scholar
  7. 7.
    Kasahara, M., and Hinkle, P.C., 1976, Proc. Natl. Acad. Sci. USA 73: 396–400.PubMedCrossRefGoogle Scholar
  8. 8.
    Kasahara, M., and Hinkle, P.C., 1977, J. Biol. Chem. 252: 7384–7390.PubMedGoogle Scholar
  9. 9.
    Crane, R.K., Malathi, P., and Preiser, H., 1976, FEBS Lett. 67: 214–216.PubMedCrossRefGoogle Scholar
  10. 10.
    Fairclough, P., Malathi, P., Preiser, H., and Crane, R.K., 1979, Biochim. Biophys. Acta 553: 295–306.PubMedCrossRefGoogle Scholar
  11. 11.
    Shanahan, M.F., and Czech, M.P., 1977, J. Biol. Chem. 252: 8341–8343.PubMedGoogle Scholar
  12. 12.
    Suzuki, K., and Kono, T., 1980, Proc. Natl. Acad. Sci. USA 77: 2542–2545.PubMedCrossRefGoogle Scholar
  13. 13.
    Kono, T., Suzuki, K., Dansey, L.E., Robinson, F.W., and Blevins, T.L., 1981, J. Biol. Chem. 256: 6400–6407.PubMedGoogle Scholar
  14. 14.
    Kono, T., Robinson, F.W., Blevins, T.L., and Ezaki, O., 1982, J. Biol. Chem. 257: 10942–10947.PubMedGoogle Scholar
  15. 15.
    Robinson, F.W., Blevins, T.L., Suzuki, K., and Kono, T., 1982, Anal. Biochem. 122: 10–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Czech, M.P., 1976, Mol. Cell. Biochem. 11: 51–63.PubMedCrossRefGoogle Scholar
  17. 17.
    Whitesell, R.R., and Gliemann, J., 1979, J. Biol. Chem. 254: 5276–5283.PubMedGoogle Scholar
  18. 18.
    Amatruda, J.M., and Finch, E.D., 1979, J. Biol. Chem. 254: 2619–2625.PubMedGoogle Scholar
  19. 19.
    Kono, T., 1982, in Membranes and Transport (A.N. Martonosi, ed.), Vol. 2, pp. 551–554, Plenum, New York.Google Scholar
  20. 20.
    Ezaki, O., and Kono, T., 1982, J. Biol. Chem. 257: 14306–14310.PubMedGoogle Scholar
  21. 21.
    Brown, D.H., Park, C.R., Daughaday, W.H., and Cornblath, M., 1952, J. Biol. Chem. 197: 167–174.PubMedGoogle Scholar
  22. 22.
    Yu, K.T., and Gould, M.K., 1981, Diabetologia 21: 482–488.PubMedCrossRefGoogle Scholar
  23. 23.
    Kipnis, D.M., and Cori, C.F., 1957, J. Biol. Chem. 224: 681–693.PubMedGoogle Scholar
  24. 24.
    Silverstein, S.C., Steinman, R.M., and Cohn, Z.A., 1977, Annu. Rev. Biochem. 46: 669–722.PubMedCrossRefGoogle Scholar
  25. 25.
    Steinman, R.M., Silver, J.M., and Cohn, Z.A., 1974, J. Cell Biol. 63: 949–969.PubMedCrossRefGoogle Scholar
  26. 26.
    Weigel, P.H., and Oka, J.A., 1981, J. Biol. Chem. 256: 2615–2617.PubMedGoogle Scholar
  27. 27.
    Palade, G., 1975, Science 189: 347–358.PubMedCrossRefGoogle Scholar
  28. 28.
    Ciba Foundation Symposium 92: Membrane Recycling,(D. Evered and G.M. Collins, eds.) Pitman, London.CrossRefGoogle Scholar
  29. 29.
    Anderson, R.G.W., Brown, M.S., Beisiegel, U., and Goldstein, J.L., 1982, J. Cell Biol. 93: 523–531.PubMedCrossRefGoogle Scholar
  30. 30.
    Marshall, S., Green, A., and Olefsky, J.M., 1981, J. Biol. Chem. 256: 11464–11470.PubMedGoogle Scholar
  31. 31.
    Basu, S.K., Goldstein, J.L., Anderson, R.G.W., and Brown, M.S., 1981, Cell 24: 493–502.PubMedCrossRefGoogle Scholar
  32. 32.
    Czech, M.P., 1977, Annu. Rev. Biochem. 46: 359–384.PubMedCrossRefGoogle Scholar
  33. 33.
    Hall, S., Keo, L., Yu, K.T., and Gould, M.K., 1982, Diabetes 31: 846–850.PubMedCrossRefGoogle Scholar
  34. 34.
    Eckel, J., Pandalis, G., and Reinauer, H., 1983, Biochem. J. 212: 385–392.PubMedGoogle Scholar
  35. 35.
    Lamer, J., Cheng, K., Schwartz, C., Kikuchi, K., Tamura, S., Creacy, S., Dubler, R., Galasko, G., Pullin, C., and Katz, M., 1982 Recent Prog. Horm. Res. 38: 511–556.Google Scholar
  36. 36.
    Kono, T., 1983, Recent Prog. Horm. Res. 39: 519–557.PubMedGoogle Scholar
  37. 37.
    Cushman, S.W., and Wardzala, L.J., 1980, J. Biol. Chem. 255: 4758–4762.PubMedGoogle Scholar
  38. 38.
    Karnieli, E., Zarnowski, M.J., Hissin, P.J., Simpson, I.A., Salans, L.B., and Cushman, S.W., 1981, J. Biol. Chem. 256: 4772–4777.PubMedGoogle Scholar
  39. 39.
    Wheeler, T.J., Simpson, I.A., Sogin, D.C., Hinkle, P.C., and Cushman, S.W., 1982, Biochem. Biophys. Res. Commun. 105: 89–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Lienhard, G.E., Kim, H.H., Ransome, K.J., and Gorga, J.C., 1982, Biochem. Biophys. Res. Commun. 105: 1150–1156.PubMedCrossRefGoogle Scholar
  41. 41.
    Gorga, J.C., and Lienhard, G.E., 1982, Fed. Proc. 41: 627.Google Scholar
  42. 42.
    Wardzala, L.J., and Jeanrenaud, B., 1981, J. Biol. Chem. 256: 7090–7093.PubMedGoogle Scholar
  43. 43.
    Ezaki, O., and Kono, T., 1984, Arch. Biochem. Biophys. 231: 280–286.PubMedCrossRefGoogle Scholar
  44. 44.
    Watanabe, T., Smith, M.M., Robinson, F.W., and Kono, T., 1984, J. Biol. Chem., 259: 13117–13122.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Tetsuro Kono
    • 1
  1. 1.Department of Physiology, School of MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations