Advertisement

Hormonal Regulation of the Expression of the Genes for Malic Enzyme and Fatty Acid Synthase

  • Alan G. Goodridge

Abstract

In many cell types, the primary function of the pathway for de novo fatty acid synthesis is to provide long-chain fatty acids for membrane lipids. In the liver, however, the maximum rates of de novo fatty acid synthesis can be several orders of magnitude higher than that required for membrane biosynthesis. The primary function of hepatic lipogenesis is to convert excess dietary carbohydrate or protein to fatty acids, which are stored as triglyceride in adipose tissue and used as a source of energy during periods of restricted food intake. Regulation of hepatic fatty acid synthesis is consonant with this function. Thus, synthesis of long-chain fatty acids in the liver is inhibited by starvation, whereas refeeding starved animals stimulates fatty acid synthesis to normal levels or to supranormal levels if the diet is high in carbohydrate.(1,2)

Keywords

Thyroid Hormone Fatty Acid Synthesis Malic Enzyme Liver Slice Lipogenic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tepperman, H., and Tepperman, J., 1964, Fed. Proc. 23: 73–75.PubMedGoogle Scholar
  2. 2.
    Volpe, J.J., and Vagelos, P.R., 1976, Physiol. Rev. 56: 339–417.PubMedGoogle Scholar
  3. Stetten, D., Jr., and Boxer, G.E., 1944, J. Biol. Chem. 156:271–278.Google Scholar
  4. 4.
    Chernick, S.S., and Chaikoff, I.L., 1950, J. Biol. Chem. 186: 535–542.PubMedGoogle Scholar
  5. 5.
    Felts, J.M., Chaikoff, I.L., and Osborn, M.J., 1951, J. Biol. Chem. 193: 557–562.PubMedGoogle Scholar
  6. 6.
    Baker, N., Chaikoff, I.L., and Schusdek, A., 1952, J. Biol. Chem. 194: 435–443.PubMedGoogle Scholar
  7. 7.
    Winegrad,.A.I., and Renold, A.E., 1958, J. Biol. Chem. 233: 267–272.Google Scholar
  8. 8.
    Bloch, K., and Kramer, W., 1948, J. Biol. Chem. 173: 811–812.PubMedGoogle Scholar
  9. 9.
    Topping, D.L., and Mayes, P.A., 1972, Biochem. J. 126: 295–311.Google Scholar
  10. 10.
    Goodridge, A.G., 1973, J. Biol. Chem. 248: 1924–1931.PubMedGoogle Scholar
  11. 11.
    Geelen, M.J.H., Beynen, A.C., Christiansen, R.Z., Lepreau-Jose, M.J., and Gibson, D.M., 1978, FEBS Lett. 95: 326–330.PubMedCrossRefGoogle Scholar
  12. 12.
    Goodridge, A.G., 1973, J. Biol. Chem. 248: 4318–4326.PubMedGoogle Scholar
  13. 13.
    Haugaard, E.S., and Stadie, W.C., 1953, J. Biol. Chem. 200: 753–757.PubMedGoogle Scholar
  14. 14.
    Klain, G.J., and Weiser, P.C., 1973, Biochem. Biophys. Res. Commun. 55: 76–83.PubMedCrossRefGoogle Scholar
  15. 15.
    Volpe, J.J., and Masara, J.C., 1975, Biochim. Biophys. Acta 380: 454–472.PubMedGoogle Scholar
  16. 16.
    Blackhard, W.G., Nelson, N.C., and Andrews, S.S., 1974, Diabetes 23: 199–202.Google Scholar
  17. 17.
    Buchanan, K.D., Vance, J.E., Dinstl, D., and Williams, R.H., 1969, Diabetes 18: 11–18.PubMedGoogle Scholar
  18. 18.
    Ohneda, A., Aguilar-Parada, E., Eisentraut, A.M., and Unger, R.M., 1969, Diabetes 18: 1–10.PubMedGoogle Scholar
  19. 19.
    Wakil, S.J., Stoops, J.K., and Joshi, V.C., 1983, Annu. Rev. Biochem. 52: 537–579.PubMedCrossRefGoogle Scholar
  20. 20.
    Goodridge, A.G., 1968, Biochem. J. 108: 663–666.PubMedGoogle Scholar
  21. 21.
    Goodridge, A.G., 1968, Biochem. J. 108: 667–673.PubMedGoogle Scholar
  22. 22.
    Korchak, H.M., and Masoro, E.J., 1962, Biochim. Biophys. Acta 58: 354–356.PubMedCrossRefGoogle Scholar
  23. 23.
    Tepperman, H.M., and Tepperman, J., 1964, Am. J. Physiol. 206: 357–361.PubMedGoogle Scholar
  24. 24.
    Kornacker, M.S., and Lowenstein, J.M., 1965, Biochem. J. 94: 209–215.PubMedGoogle Scholar
  25. 25.
    Wise, E.M., and Ball, E.G., 1964, Proc. Natl. Acad. Sci. USA 52: 1255–1263.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodridge, A.G., 1973, J. Biol. Chem. 248: 1932–1938.Google Scholar
  27. 27.
    Lakshmanan, M.R., Nepokroeff, C.M., and Porter, J.W., 1972, Proc. Natl. Acad. Sci. USA 69: 3516–3519.PubMedCrossRefGoogle Scholar
  28. 28.
    Goodridge, A.G., Garay, A., and Silpananta, P., 1974, J. Biol. Chem. 249: 1469–1475.PubMedGoogle Scholar
  29. 29.
    Silpananta, P., and Goodridge, A.G., 1971, J. Biol. Chem. 246: 5754–1561.PubMedGoogle Scholar
  30. 30.
    Suzuki, F., Fukunishi, K., Daikuhara, Y., and Takeda, Y., 1967, J. Biochem. 62: 170–178.PubMedGoogle Scholar
  31. 31.
    Fisher, P.W.F., and Goodridge, A.G., 1978, Arch. Biochem. Biophys. 190: 332–344.CrossRefGoogle Scholar
  32. 32.
    Zehner, Z.E., Joshi, V.C., and Wakil, Si., 1977, J. Biol. Chem. 252: 7015–7022.PubMedGoogle Scholar
  33. 33.
    Craig, M.C., Nepokroeff, C.M., Lakshmanan, M.R., and Porter, J.W., 1972, Arch. Biochem. Biophys. 152: 619–630.PubMedCrossRefGoogle Scholar
  34. 34.
    Diamant, S., Gorin, E., and Shafrir, E., 1972, Eur. J. Biochem. 26: 553–559.PubMedCrossRefGoogle Scholar
  35. 35.
    Mariash, C.N., Kaiser, F.E., Schwartz, H.L., Towle, H.C., and Oppenheimer, J.H., 1980, J. Clin. Invest. 65: 1126–1134.PubMedCrossRefGoogle Scholar
  36. 36.
    Young, J.W., 1968, Am. J. Physiol. 214: 378–383.PubMedGoogle Scholar
  37. 37.
    Chandrabose, K.A., and Bensadoun, A., 1971, Comp. Biochem. Physiol. 39B: 55–59.Google Scholar
  38. 38.
    Portnay, G.I., O’Brian, J.T., Bush, J., Vagenakis, A.G., Azizi, F., Arky, R.A., Ingbar, S.H., and Braverman, L.E., 1974, J. Clin. Endocrinol. Metab. 39: 191–194.PubMedCrossRefGoogle Scholar
  39. 39.
    Vagenakis, A.G., Portnay, G.I., O’Brian, J.T., Rudolph, M., Arky, R.A., Ingbar, S.H., and Braverman, L.E., 1977, J. Clin. Endocrinol. Metab. 45: 1305–1309.PubMedCrossRefGoogle Scholar
  40. 40.
    Marx, J.V., Richert, D.A., Westerfeld, W.W., and Ruegamer, W.R., 1971, Biochem. Pharmacol. 20: 3009–3020.PubMedCrossRefGoogle Scholar
  41. 41.
    Colton, D.G., Mehlman, M.A., and Ruegamer, W.R., 1972, Endocrinology 90: 1521–1528.PubMedCrossRefGoogle Scholar
  42. 42.
    Goodridge, A.G., 1968, Biochem. J. 108: 655–662.PubMedGoogle Scholar
  43. 43.
    Joshi, V.C., and Sidbury, J.B., Jr., 1976, Arch. Biochem. Biophys. 173: 403–414.PubMedCrossRefGoogle Scholar
  44. 44.
    Goodridge, A.G., 1974, Fed. Proc. 34: 117–123.Google Scholar
  45. 45.
    Goodridge, A.G., and Adelman, T.G., 1976, J. Biol. Chem. 251: 3027–3032.PubMedGoogle Scholar
  46. 46.
    Drake, R.L., Parks, W.C., and Thompson, E.W., 1983, J. Biol. Chem. 258: 6008–6010.PubMedGoogle Scholar
  47. 47.
    Morris, S.M., Jr., Nilson, J.H., Jenik, R.A., Winberry, L.K., McDevitt, M.A., and Goodridge, A.G., 1982, J. Biol. Chem. 257: 3225–3229.PubMedGoogle Scholar
  48. 48.
    Winberry, L.K., Morris, S.M., Jr., Fisch, J.E., Glynias, M.J., Jenik, R.A., and Goodridge, A.G., 1983, J. Biol. Chem. 258: 1337–1342.PubMedGoogle Scholar
  49. 49.
    Buckner, J.S., and Kolattukudy, P.E., 1976, Biochemistry 15: 1948–1957.PubMedCrossRefGoogle Scholar
  50. 50.
    Siddiqui, U.A., Goldflam, T., and Goodridge, A.G., 1981, J. Biol. Chem. 256: 4544–4550.PubMedGoogle Scholar
  51. 51.
    Messing, J., and Vieira, J., 1982, Gene 19: 269–276.PubMedCrossRefGoogle Scholar
  52. 52.
    Thomas, P.S., 1980, Proc. Natl. Acad. Sci. USA 77: 5201–5205.PubMedCrossRefGoogle Scholar
  53. 53.
    Spence, J.T., and Pitot, H.C., 1979, J. Biol. Chem. 254: 12331–12336.PubMedGoogle Scholar
  54. 54.
    Spence, J.T., Pitot, H.C., and Zalitis, G., 1979, J. Biol. Chem. 254: 12169–12173.PubMedGoogle Scholar
  55. 55.
    Winberry, L., Nakayama, R., Wolfe, R., and Holten, D., 1980, Biochem. Biophys. Res. Commun. 96: 748–755.PubMedCrossRefGoogle Scholar
  56. 56.
    Nakamura, T., Yoshimoto, K., Aoyama, K., and Ichihara, A., 1980, J. Biochem. 91: 681–693.Google Scholar
  57. 57.
    Poole, G.P., Postle, A.D., and Bloxham, D.P., 1982, Biochem. J. 204: 81–87.PubMedGoogle Scholar
  58. 58.
    Wilson, E.J., and McMurray, E.C., 1981, J. Biol. Chem. 256: 11657–11662.PubMedGoogle Scholar
  59. 59.
    Mariash, C.N., McSwigan, C.R., Towle, H.C., Schwartz, H.L., and Oppenheimer, J.H., 1986, J. Clin. Invest. 68: 1485–1490.CrossRefGoogle Scholar
  60. 60.
    Gunn, J.M., Tilghman, S.M., Hanson, R.W., Reshef, L., and Ballard, F.J., 1975, Biochemistry 14: 2350–2356.PubMedCrossRefGoogle Scholar
  61. 61.
    Andreone, T.L., Beale, E.G., Bar, R.S., and Granner, D.K., 1982, J. Biol. Chem. 257: 35–38.PubMedGoogle Scholar
  62. 62.
    Peavy, D.E., Taylor, J.M., and Jefferson, L.S., 1978, Proc. Natl. Acad. Sci. USA 75: 5879–5883.PubMedCrossRefGoogle Scholar
  63. 63.
    Liang, T.J., and Grieninger, G., 1981, Proc. Natl. Acad. Sci. USA 78: 6972–6976.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Alan G. Goodridge
    • 1
  1. 1.Departments of Pharmacology and BiochemistryCase Western Reserve UniversityClevelandUSA

Personalised recommendations