Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 181))

Abstract

All hormone-synthesizing cells in the pituitary gland appear to differentiate from an initially homogeneous epithelium called Rathke’s pouch, which forms as an invagination of the oral ectoderm (Levy et al., 1980). Both the anterior and intermediate lobes of the pituitary are derived from this structure, which, separates from the oral ectoderm during early embryogenesis. The separation occurs after Rathke’s pouch has contacted a ventral outpocketing of the neural tube, the infundibulum, which later becomes the posterior pituitary. The anterior wall of Rathke’s pouch then proliferates rapidly and becomes the anterior pituitary, which contains at least six different cell types synthesizing different peptide hormones; cells producing proopiomelanocortin (POMC) account for about 5% of the cells in the adult anterior lobe. The posterior wall of Rathke’s pouch differentiates into the intermediate lobe which contains only cells synthesizing POMC; however, these POMC-containing cells differ from anterior lobe POMC cells in that they process this prohormone to different end-product hormones (see below).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R.G., Pintar, J.E., Stack, J., and Kendall, J. (1984). Biosynthesis and processing of pro-opiomelanocortin-derived peptides during fetal pituitary development. Dev.Biol. 102: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Begeot, M., Dubois, M.P. and Dubois, P.M. (1982). Comparative study in vivo and in vitro of the differentiation of immuno-reactive corticotropic cells in fetal rat anterior pituitary. Neuroendocrinology 35:255–264.

    Article  PubMed  CAS  Google Scholar 

  • Begeot, M., Dubois, M.P., and Dubois, P.M. (1977). Immunological localization of alphaendorphins and betalipotropin in corticotropic cells of normal and anencephalic fetal pitui-taries. Cell Tiss. Res. 193:413–422.

    Google Scholar 

  • Brubaker, P.L., Baird, A.C., Bennett, H.P.J., Browne, C.A. and Solomon, S. (1982). Corticotropic peptides in the human fetal pituitary. Endocrinology 111:1150–1159.

    Article  PubMed  CAS  Google Scholar 

  • Chatelain, A., Dubois, M.P. and Dupuoy, J.P. (1976). Hypothalamus and cytodifferentiation of fetal pituitary-gland study, in vivo. Cell Tiss. Res. 169:335–344.

    CAS  Google Scholar 

  • Chatelain, A., Dupouy, J.P. and Dubois, M.P. (1979). Ontogenesis of cells producing polypeptide hormones ACTH, MSH, LPH, GH, prolactin) in the fetal hypophysis of the rat: influence of the hypothalamus. Cell Tiss. Res. 196:409–427.

    CAS  Google Scholar 

  • Chatelain, A. and Dupouy, J.P. (1981) Adrenocorticotrophic hormone in the anterior and neurointermediate lobes of the fetal rat pituitary gland. J. Endocrinol. (Lond.) 89:181–186.

    Article  CAS  Google Scholar 

  • Coffigny, H., and Dupouy, H.P. (1978). Fetal adrenals of rat-correlations between growth, cytology, and hormone activity, with and without ACTH deficiency. Gen. Com. Endocrinol. 34:321–322.

    Article  Google Scholar 

  • Cooper, V., Pintar, J.E., and Levitt, P. (1983). Localization of monoamine oxidase B immunoreactivity in the neonate and adult rat pituitary gland. Neuroscience Abst. 9:704.

    Google Scholar 

  • Derby, M.A. and Pintar, J.E. (1978). The histochemical specificity of Streptomyces hyaluronidase and chondroitinase ABC. Histo-chem J. 10:529–547.

    Article  CAS  Google Scholar 

  • Dupouy, J.P. (1980) Differentiation of MSH-containing, ACTH-con-taining, endorphin-containing and LPH-containing cells in the hypophysis during embryonic and fetal development. Int. Rev. Cytol. 68:197–249.

    Article  PubMed  CAS  Google Scholar 

  • Eberwine, J.H. and Roberts, J.L. (1983). Analysis of pro-opio-melanocortin gene structure and function. DNA 2:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Eipper, B.A. and Mains, R.E. (1980). Structure and biosynthesis of pro-adrenocorticotropin/endorphin and related peptides. Endocrine Rev. 1:1–27.

    Article  CAS  Google Scholar 

  • Fremont, P.H. and Ferrand, R. (1979). In vitro studies on the self-differentiating capacities of the quail adenohypophysis epithelium. Anat. Embryol. 156:255–270.

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, P.J. (1937). An experimental contribution to the origin of the pars intermedia of the hypophysis. Acta Neurol. Morphol. 1:3–11.

    Google Scholar 

  • Gee, C. Chen, C.-L., Roberts, J.L., Thompson, R. and Watson, S.J. (1983). Identification of proopiomelanocortin neurones in rat hypothalamus by in situ cDNA-mRNA hybridization. Nature 306:374–376.

    Article  PubMed  CAS  Google Scholar 

  • Glembotski, C. (1982a). Characterization of the peptide acetyl-transferase activity in bovine and rat intermediate pituita— ries responsible for the acetylation of B-endorphin and a-melanotropin J. Biol. Chem. 257:10501–10509.

    PubMed  CAS  Google Scholar 

  • Glembotski, C. (1982b) Acetylation of a-Melanotropin and B-endorphin in the rat intermediate pituitary. J. Biol. Chem. 257: 10493–10500.

    PubMed  CAS  Google Scholar 

  • Gumbiner, B. and Kelley, R. (1981). Secretory granules at an anterior pituitary cell line, A & T-20 contain only mature forms of corticotropin and B-lipotropin. Proc. Natl. Acad. Sci. USA 78:318–322.

    Article  PubMed  CAS  Google Scholar 

  • Haase, A.T., Stowring, L., Harris, J.D., Traynor, B., Ventura, P., Peluso, R. and Brahic, M. (1982). Visual DNA synthesis and the tempo of infection in vitro. Virology 119:399–410.

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka, Y. (1967). The effects of posterior hypothalectomy upon the growth and metamorphosis of the tadpole of Rana pipiens. Gen. Comp. Endo. 8:417–431.

    Article  CAS  Google Scholar 

  • Ishikawa, H., Shiino, M., and Rennels, E.G. (1977). Functional clones of pituitary cells derived from Rathke’s pouch epithelium of fetal rats. Endocrinology 100:1227–1230.

    Article  PubMed  CAS  Google Scholar 

  • Khachaturian, H., Alessi, N.E., Munfakh, N., and Watson, S.J. (1983). Ontogeny of opiod and related peptides in the rat CNS and pituitary. Life Sci. 33:61–64.

    Article  PubMed  CAS  Google Scholar 

  • Liotta, A.S., Yamaguchi, H. and Krieger, D.T. (1981). Biosynthesis and release of B-endorphine-, N-acetyl B-endorphine, B-endor-phin-(l-27)-, and N-acetyl B-endorphin-(l-27)-like peptides by rat pituitary neurointermediate lobe: B-endorphin is not further processed by anterior lobe. J. Neurosei. 1:585–595.

    CAS  Google Scholar 

  • Levitt, P., Pintar, J.E. and Breakefield, X.O. (1982). Monoamine oxidase B is found in brain astrocytes and serotonergic neurons. Proc. Natl. Acad. Sci. USA, 79:6385–6389.

    Article  PubMed  CAS  Google Scholar 

  • Levy, N.B., Andrew, A., Rawdon, B.B. and Kramer, B. (1980). Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal and other APUD cells. J. Embryol. exp. Morph. 57:71–78.

    PubMed  CAS  Google Scholar 

  • Loh, Y.P., Eskay, R.L. and Brownstein, M. (1980). MSH-like peptides in rat brain: identification and changes in level during development. Biochem. Biophys. Res. Comm. 94:916–923.

    Article  PubMed  CAS  Google Scholar 

  • Loh, Y.P., Gritsch, H.M., and Chang, T.-L. (1982). Pro-opio-melanocortin processing in the pituitary: A model for neuropeptide biosynthesis. Peptides 3:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Nemeskeri, A., Halasz B., and Kurcz, M. (1983). Ontogenesis of the rat hypothalamo-adenohypophyseal system and the capacity of the fetal pituitary to differentiate into hormone-synthesizing and releasing cells. In The Anterior Pituitary Gland, ed. Bhatnager, Raven.

    Google Scholar 

  • Osamura, R.K. and Nakane, P.K. (1982). Review: Functional Differentiation of cells in the anterior and intermediate pituitary glands-immunohistochemical studies. Acta Histochem. Cytochem. 15:294–309.

    Article  Google Scholar 

  • Pintar, J.E. and Breakefield, X.O. (1982). MAO activity as a determinant in human neurophysiology. Behav. Genet. 12:53–68.

    Article  PubMed  CAS  Google Scholar 

  • Pintar, J.E., Roberts, J.L. and Gee, C. (1982). Expression of the propiomelanocortin gene in early stages of fetal rat pituitary development. Neurosei. Abst. 8:703.

    Google Scholar 

  • Pintar, J.E., Levitt, P., Salach, J.I., Weyler, W., Rosenberg, M.B., and Breakefield, X.O. (1983). Specificity of antisera prepared against pure bovine MAO-B. Brain Res. 276:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Pintar, J.E., Kreiger, D.T., and Liotta, A.S. (1984). Ontogeny of endorphin and MSH-sized peptides during rat pituitary develoment. Int. Congress. Endo. 7, in press.

    Google Scholar 

  • Powers, C.A. and Nasjilletti, A, (1982). A novel kinin-generating protease (Kininogenase) in the porcine anterior pituitary. J. Biol Chem. 257:5594–5600.

    PubMed  CAS  Google Scholar 

  • Rosen, J.N., Wou, S.L.C. and Comstock, J.P. (1975). Regulation of casein messenger RNA during development of the rat mammary gland. Biochem. 14:2895–2903.

    Article  CAS  Google Scholar 

  • Salm, A.K., Hatton, G.I. and Nilaver, G. (1982). Immunoreactive glial fibrillary acidic protein in pituicytes of the rat neurohypophysis. Brain Res. 236:471–476.

    Article  PubMed  CAS  Google Scholar 

  • Shiino, M., Ishikawa, H. and Rennels, E.G. (1977). In vitro and in vivo studies on cytodifferentiation of pituitary clonal cells derived from the epithelium of Rathke’s pouch. Cell Tiss. Res. 181:473–485.

    CAS  Google Scholar 

  • Silman, R.E., Chard, T., Lowry, P.J., Smith, I. and Young, I.M. (1976). Human fetal pituitary peptides and parturition. Nature 260:716–718.

    Article  CAS  Google Scholar 

  • Silman, R.E., Holland, D., Chard, T., Lowry, P.J., Hope, J., Robinson, J.S. and Thornborn, G.D. (1978). The ACTH “family” tree of the monkey changes with development. Nature 276:526–527.

    Article  PubMed  CAS  Google Scholar 

  • Suess, U. and Pliska, V. (1981). Identification of the pituicytes as astroglial cells by indirect immunofluorescence-staining for the glial fibrillary acidic protein. Brain Res. 221:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Schwartenberg, D.G., and Nakane, P.K. (1982). Ontogenesis of adrenocortico-tropin related peptide determinants in the hypothalamus and pituitary gland of the rat. Endocrinology 110:855–864.

    Article  Google Scholar 

  • Tardy, M., Costa, M.F.D., Fages, C., Bardakdjian, J. and Gonnard, P. (1982). Uptake and binding of serotonin by primary cul tures of mouse astrocytes. Devei. Neurosci. 5:19–26.

    Article  CAS  Google Scholar 

  • Watanabe, Y.G. (1982). An organ culture study on the site of determination of ACTH and LH cells in the rat adenohypophy-sis. Cell Tiss. Res. 227:267–276.

    Article  CAS  Google Scholar 

  • Watanabe, Y.G. and Daikoku, S. (1979). An immunohistochemical study on the cytogenesis of adenohypophysial cells in fetal rat. Devel. Biol. 68:557–567.

    Article  CAS  Google Scholar 

  • Wingstrand, K.G. (1951). The structure and development of the avian pituitary. Lund: Gleerup.

    Google Scholar 

  • Wingstrand, K.G. (1966). Comparative anatomy and evolution of the hypophysis. In The pituitary gland (ed. G.W. Harris and B.T. Donovan), vol. III, p. 1–27, London: Butterworths.

    Google Scholar 

  • Zakarian, S. and Smyth, D.G. Distribution of B-endorphin-related peptides in rat pituitary and brain. Biochem J. 202:561–571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Pintar, J.E. (1984). Molecular Studies of Pituitary Gland Differentiation. In: Lauder, J.M., Nelson, P.G. (eds) Gene Expression and Cell-Cell Interactions in the Developing Nervous System. Advances in Experimental Medicine and Biology, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4868-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4868-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4870-2

  • Online ISBN: 978-1-4684-4868-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics