Advertisement

Genomic and Phenotypic Expression of Autonomic Neurons

  • Tong H. Joh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 181)

Abstract

As early as 1909 Elliott1 proposed that an adrenaline-like substance is released from sympathetic nerve terminals to produce a chemical neurotransmission. Since then, various chemical neurotransmitters have been identified. The classical chemical neurotramsnitters, catecholamines (CA), serotonin (5HT), acetylcholine (ACh) and gamma-aminobutyric acid (GABA), are most venerable neurotransmitters.

Keywords

Tyrosine Hydroxylase Nerve Ending Choline Acetyltransferase Sympathetic Nerve Terminal Bovine Adrenal Medulla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.R. Elliot, The action of adrenaline, J. Physiol. (London) 32:401 (1905).Google Scholar
  2. 2.
    W.W. Douglas, Stimulus-secretion coupling: the concept and clues from chromaffin and other cells, Brit. J. Pharmacol. Chemother. 34:451 (1968).CrossRefGoogle Scholar
  3. 3.
    R.M. Weinshelboum, N.B. Thoa, D.G. Johnson, I.J. Kopin, and J. Axelrod, Proportional release of norepinephrine and dopamine B-hydroxylase from sympathetic neurons, Science 174:1349 (1971).CrossRefGoogle Scholar
  4. 4.
    T.H. Joh and M. Goldstein, Isolation and characterization of multiple forms of phenylethanolamine N-methyltransferase, Mol. Pharmacol. 9:117 (1973).PubMedGoogle Scholar
  5. 5.
    T.H. Joh and M.E. Ross, Preparation of catecholamine-synthesizing enzymes as immunogens for immunohistochemistry, in: “Immunohistochemistry,” vol. 3, A.C. Cuello, ed., John Wiley & Sons, Ltd., Chichester (1983).Google Scholar
  6. 6.
    T.H. Joh, D.H. Park, and D.J. Reis, Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: a mechanism of enzyme activation, Proc. Natl. Acad. Sci. USA 75: 4744 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    M.E. Ross, D.H. Park, G. Teitelman, V.M. Pickel, D.J. Reis, and T.H. Joh, Immunohistochemical localization of choline acetyltransferase using a monoclonal antibody: a radioautographic method, Neuroscience 10(3):907 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    E.E. Baetge, B.B. Kaplan, D.J. Reis, and T.H. Joh, Translation of tyrosine hydroxylase from Poly(A)mRNA in pheochromocytoma cells (PC12) is enhanced by dexamethasone, Proc. Natl. Acad. Sci. USA 78:1269 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    T.H. Joh, C. Geghman, and D.J. Reis, Immunochemical demonstration in increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine, Proc. Natl. Acad. Sci. USA 70:2767 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Lewander, T.H. Joh, and D.J. Reis, Tyrosine hydroxylase: delayed activation in central noradrenergic neurons and induction in adrenal medulla elicited by stimulation of central cholinergic receptors, J. Pharmacol. Exp. Ther. 200:523 (1977).PubMedGoogle Scholar
  11. 11.
    D.J. Reis, T.H. Joh, and R.A. Ross, Effects of reserpine on activities and amounts of tyrosine hydroxylase and dopamine-B-hydroxylase in catecholaminergic neuronal systems in rat brain, J. Pharmacol. Exp. Ther. 193:775 (1975).PubMedGoogle Scholar
  12. 12.
    R.A. Ross, T.H. Joh, and D.J. Reis, Increase in the relative rate of synthesis of dopamine-B-hydroxylase in the nucleus locus coeruleus elicited by reserpine, J. Neurochem. 31:1491 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R.A. Ross, T.H. Joh, and D.J. Reis, Reduced rate of biosynthesis of dopamine-B-hydroxylase in the nucleus locus coeruleus during the retrograde reaction, Brain Res. 160:174 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    T.H. Joh, E.E. Baetge, M.E. Ross, and D.J. Reis, Evidence for the existence of homologous gene coding regions for the catecholamine biosynthetic enzymes, in: “Cold Spring Harbor Symposia on Quantitative Biology,” vol. 48, J.D. Watson, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor (1983).Google Scholar
  15. 15.
    B. Petrack, F. Sheppy, and V. Fetzer, Studies on tyrosine hydroxylase from bovine adrenal medulla, J. Biol. Chem. 243:743 (1968).PubMedGoogle Scholar
  16. 16.
    D.H. Park, E.E. Baetge, B.B. Kaplan, V.R. Albert, D.J. Reis, and T.H. Joh, Different forms of adrenal phanylethanolamine N-methyl-transferase: species-specific posttranslational modification, J. Neurochem. 38:410 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    P.H. Seeburg, H. Shine, J.A. Martial, A. Urlich, J.D. Baxter, and H.M. Goodman, Nucleotide sequence of part of the gene for human chorionic somatomatropin: purification of DNA complementary to predominant mRNA species, Cell 12:157 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    E.E. Baetge, H.M. Moon, B.B. Kaplan, D.H. Park, D.J. Reis, and T.H. Joh, Identification of clones containing DNA complementary to phenylethanolamine N-methyltransferase mRNA, Neurochem. Intl. 5(5):611 (1983).Google Scholar
  19. 19.
    J. Abelson, RNA processing and the intervening sequence problem, Ann. Rev. Biochem. 48:1035 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Breathnach and P. Chambon, Organization and expression of Eucaryotic split genes coding for proteins, Ann. Rev. Biochem. 50:349 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Tong H. Joh
    • 1
  1. 1.Laboratory of NeurobiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations