Molecular Genetics of Torpedo Marmorata Acetylcholine Receptor

  • A. Devillers-Thiery
  • J. Giraudat
  • M. Bentaboulet
  • A. Klarsfeld
  • J. P. Changeux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 181)


The acetylcholine receptor (AcChoR) is one of the best known membrane-bound allosteric proteins (reviewed by Changeux, 1981; Changeux et al., 1984). Integrated in the post-synaptic membrane of the cholinergic synapse (neuromuscular junction, electromotor synapse), it regulates the opening of a cation-selective ionic channel upon binding of the neurotransmitter (acetylcholine). In the course of the past fifteen years, the protein assembly which carries both the acetylcholine binding sites and the ion channel has been isolated and purified from fish (Electrophorus, Torpedo) electric organ and vertebrate muscle.


Acetylcholine Receptor Electric Organ Torpedo Electric Organ Acetylcholine Binding Site Acetylcholine Receptor Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.J. and Blobel, G. (1981). In vitro synthesis, glycosylation, and membrane insertion of the four subunits of Torpedo acetylcholine receptor Proc. Natl. Acad. Sci. USA, 78, 5598–5602.PubMedCrossRefGoogle Scholar
  2. Ballivet, M., Patrick, J., Lee, J. and Heinemann, S. (1982). Molecular cloning of cDNA coding for the γ-subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 79, 4466–4470.PubMedCrossRefGoogle Scholar
  3. Cartaud, J., Benedetti, L., Sobel, A. and Changeux, J-P. (1978). A morphological study of the cholinergic receptor protein from Torpedo marmorata in its membrane environment and its detergent extracted purified form. J. Cell. Sci. 29, 313–337.PubMedGoogle Scholar
  4. Changeux, J-P. (1981). The acetylcholine receptor: an “allosteric” membrane protein. The Harvey Lectures 75, 85–254.Google Scholar
  5. Changeux, J-P., Bon, F., Cartaud J., Devillers-Thiéry, A., Giraudat, J., Heidmann, T., Holton, B., Ngiêm, H.O., Popot, J-L., Van Rapenbusch, R. and Tzartos, S., (1984). Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata. Cold Spring Harbor Symp. Quant. Biol. 48 (in press).Google Scholar
  6. Changeux, J-P. and Danchin, A. (1976). Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–712.PubMedCrossRefGoogle Scholar
  7. Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S. (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ-subunit. Proc. Natl. Acad. Sci. USA, 80, 1111–1115.PubMedCrossRefGoogle Scholar
  8. Devillers-Thiéry, A., Changeux, J-P., Paroutaud, P. and Strosberg, A.D. (1979). The amino-terminal sequence of the 40K subunit of the acetylcholine receptor protein from Torpedo marmorata. FEBS Lett. 104, 99–105PubMedCrossRefGoogle Scholar
  9. Devillers-Thiéry, A., Giraudat, J., Bentaboulet, M. and Changeux, J-P.(1983). Complete mRNA coding sequence of the acetylcholine binding α -subunit from Torpedo marmorata acetylcholine receptor. A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. U.S.A., 80, 2067–2071PubMedCrossRefGoogle Scholar
  10. Dwyer, T.M., Adams, D. and Hille, B. (1980). The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492.PubMedCrossRefGoogle Scholar
  11. Engelman, D.M., Henderson, R., Mc Lachlan, A.D. and Wallace, B.A (1980). Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA, 77, 2023–2027.PubMedCrossRefGoogle Scholar
  12. Fambrough, D. (1979). Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59, 165–277.PubMedGoogle Scholar
  13. Finer-Moore, J. and Stroud, R.M. (1984). Amphiphatic analysis and possible formation of the ion channel in acetylcholine receptor. Proc. Natl. Acad. Sci. USA, 81, 155–159.PubMedCrossRefGoogle Scholar
  14. Giraudat, J., Devillers-Thiery, A., Auffray, C., Rougeon, F.. and Changeux, J-P. Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J. I, 713–717.Google Scholar
  15. Guy, R. (1984). A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophysical J. (in press).Google Scholar
  16. Gysin, R., Wirth, M. and Flanagan, S. (1981). Structural heterogeneity and sub-cellular distribution of nicotinic synapse associated proteins. J. Biol. Chora. 256, 11373–11376.Google Scholar
  17. Heidmann, T., Oswald, R. and Changeux, J-P. (1983a). Le site de liaison de haute affinité de la chlorpromazine est présent à un seul exemplaire par molécule de récepteur cholinergique et est commun aux 4 chaînes polypeptides. C.R. Acad. Sci. 295, 345–349.Google Scholar
  18. Heidmann, T., Oswald, R. and Changeux, J-P. (1983b). Multiple sites of action for non-conpetitive blockers on acetylcholine receptor-rich membrane fragments from Torpedo marmorata. Biochemistry, 22, 3112–3127.PubMedCrossRefGoogle Scholar
  19. Karlin, A. (1980). In “Cell Surface Reviews” (Poste, G., Nicolson, G.L. and Cotman, C.W. Eds). Elsevier North Holland Inc. New-York, 6, 191–260.Google Scholar
  20. Kistler, J., Stroud, R.M., Klymkovsky, M.W., Lalancette R.A. and Fairclough, R.H. (1982). Structure and function of an acetylcholine receptor. Biophys. J. 37, 371–383.PubMedCrossRefGoogle Scholar
  21. Klarsfeld, A., Devillers-Thiéry, A., Giraudat, J. and Changeux, J-P. (1984). A single gene codes for the nicotinic acetylcholine receptor ou subunit in Torpedo marmorata: structural and developmental implications. IMBO J. 3, 35–41Google Scholar
  22. Kosower, E. (1983). Partial tertiary structure assignments for the β, γ and δ subunits of the acetylcholine receptor on the basis of the hydrophobicity of amino acid sequences and channel location using single group rotation theory. FEBS Lett. 155, 245–247.PubMedCrossRefGoogle Scholar
  23. Maxam, A.M. and Gilbert, W. (1980). Sequencing end-labeled DNA with base specific chemical cleavages. In Methods in Enzymology 65, 499–560.CrossRefGoogle Scholar
  24. Mendez, B., Valenzuela, P., Martial, J.A and Baxter, J.D (1980). Cell-free synthesis of acetylcholine receptor polypeptides. Science 209, 695–697.PubMedCrossRefGoogle Scholar
  25. Merlie, J-P., Sebbane, R., Gardner, S. and Lindstrom, J. (1983). cDNA clone for the α-subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA, 80, 3845–3849.PubMedCrossRefGoogle Scholar
  26. Nghiêm, H.O., Cartaud, J., Dubreuil, C., Buttin, G. and Changeux, J-P. (1983).Production and characterization of a monoclonal antibody directed against the 43,000 MW polypeptide from Torpedo marmorata electric organ. Proc. Natl. Acad. Sci. U.S.A, 80, 6403–6407.PubMedCrossRefGoogle Scholar
  27. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982). Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature, 299, 793–797.PubMedCrossRefGoogle Scholar
  28. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shiraizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S. (1983a). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding α-subunit precursor of muscle acetylcholine receptor. Nature, 305, 818–823PubMedCrossRefGoogle Scholar
  29. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983). Primary structures of β and δ subunit precursors of T. californica acetylcholine receptor deduced from cDNA sequences. Nature, 301, 251–255.PubMedCrossRefGoogle Scholar
  30. Noda, M., Takahasi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983). Structural homology of Torpedo californica AchR subunits. Nature, 302, 528–532.PubMedCrossRefGoogle Scholar
  31. Oswald, R. and Changeux, J-P. (198l).Ultraviolet light induced labeling by non-competitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci., USA, 78, 3925–3929.CrossRefGoogle Scholar
  32. Ploegh, H.L., Ou, H.T., Strominger, J.L (1980). Molecular cloning of a human histocompatibility antigen cDNA fragment. Proc. Natl. Acad. Sci. USA, 77, 6081–6085.PubMedCrossRefGoogle Scholar
  33. Raftery, M.A., Hunkapiller, M., Strader, C. and Hood, L.E. (1980). Acetylcholine receptor: complex of homologous subunits. Science 208, 1454–1457.PubMedCrossRefGoogle Scholar
  34. Ricciardi, R.P., Miller, J.S. and Roberto, B.E. (1979). Purification and mapping of specific mRNAs by hybridization-selection and cell-free translation. Proc. Natl. Acad. Sci. USA 76, 4927–4931.PubMedCrossRefGoogle Scholar
  35. Saitoh, T. and Changeux, J-P. (1980). Phosphorylation in vitro of membrane fragments from Torpedo marmorata electric organ. Effect on membrane solubilization by detergents. Eur. J. Biochem. 105, 51–62.PubMedCrossRefGoogle Scholar
  36. Sumikawa, K., Hougton, M., Smith, J.C., Bell, L., Richards, B.M. and Barnard, E.A. (1982). The molecular cloning and characterization of cDNA coding for the α-subunit of the acetylcholine receptor. Nucleic Acids Res. 10, 5809–5822.PubMedCrossRefGoogle Scholar
  37. Tzartos, S. and Lindstrom, J. (1980). Monoclonal antibodies used to probe acetylcholine receptor structure. Proc. Natl. Acad. Sci. USA 77, 755–759.PubMedCrossRefGoogle Scholar
  38. Von Heijne, G. (1981). Membrane proteins. The amino acid composition of membrane-penetrating segments. Eur. J. Biochem. 120, 275–278.CrossRefGoogle Scholar
  39. Wennogle, L. and Changeux, J-P. (1982). Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur. J. Biochem. 106, 381–393.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. Devillers-Thiery
    • 1
  • J. Giraudat
    • 1
  • M. Bentaboulet
    • 1
  • A. Klarsfeld
    • 1
  • J. P. Changeux
    • 1
  1. 1.Laboratoire de Neurobiologie MoleculaireInstitut PasteurParisFrance

Personalised recommendations