New Instrumentation Facilitates the Study of Genes Coding for Molecules Involved in Cell Surface Recognition

  • William J. Dreyer
  • Janet Roman
  • David B. Teplow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 181)


During the last two decades studies of the molecular mechanisms by which antibody diversity is generated have provided us with fundamental insights into the structure, organization and programmed movement of immunoglobulin genes during development (Potter et al., 1964; Dreyer et al., 1967; Hood et al., 1975; Huang and Dreyer; 1978; Leder, 1982). Progress in this specialized area of developmental biology has occurred far more rapidly than in any other developmental system. (An appreciation of the level of knowledge extant in 1967 may be obtained by reading the proceedings of the Cold Spring Harbor Symposium on Quantitative Biology, volume 32, 1967.) The depth of genetic and molecular understanding which has been gained in this field is due in large part to the existence of myelomas, tumors of antibody-producing cells, from which gram quantities of antibody molecules could easily be obtained. These amounts of protein were necessary and sufficient, given the methods and instrumentation available in the sixties, to do structural analyses and to obtain protein sequence information about these molecules.


High Performance Liquid Chromatography Size Exclusion Chromatography Antibody Diversity Cell Surface Component Neuronal Cell Adhesion Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barany, G. and Merrifield, R. B. (1980). Solid-phase peptide synthesis, in: “The Peptides,” Vol. II, E. Gross and J. Meienhofer, eds. Academic Press, New York.Google Scholar
  2. Braunitzer, G. (1977). Pehr Victor Edman, in: “Solid Phase Methods in Protein Sequence analysis,” A. Previero and M.-A. Coletti-Previero, eds. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  3. Brown, J. P., Hewick, R. M., Hellström, I., Hellström, K. E., Doolittle, R. F. and Dreyer, W. J. (1982). Human melanoma- associated antigen p97 is structurally and functionally related to transferrin. Nature 296:171–173.PubMedCrossRefGoogle Scholar
  4. Cowan, W. (1982). A synoptic view of the development of the vetebrate central nervous system, in: “Repair and Regeneration of the Nervous System,” J. G. Nicholls, ed. Life Sciences Research Report 24. Springer Verlag, New York.Google Scholar
  5. de Blas, A. L. (1984). Hybridoma technology applied to neuro-biological problems, in: “Current Methods in Cellular Neurobiology,” J. L. Barker and J. F. McKelvy, eds. John Wiley and Sons, New York.Google Scholar
  6. Dreyer, W. J. and Bennett, J. C. (1965). The molecular basis of antibody formation: A paradox. Proc. Natl. Acad. Sci. USA 54:864–869.PubMedCrossRefGoogle Scholar
  7. Dreyer, W. J., Grey, W. and Hood, L. (1967). The genetic, molecular, and cellular basis of antibody formation: Some facts and a unifying hypothesis. Cold Spring Harbor Symp. Quant. Biol. 32:353–367.CrossRefGoogle Scholar
  8. Dreyer, W. J., Kupperman, A., Boettger, H. G., Giffin, C. E., Norris, D. O., Gortch, S. L. and Theard, L. P. (1974). Automatic mass-spectrometric analysis: Preliminary report on development of a novel mass-spectrometric system for biomedical applications. Clin. Chem. 20:998–1002.PubMedGoogle Scholar
  9. Dreyer, W. J. (1977). Peptide and protein sequencing method and apparatus. U.S. Patent #4,065,412.Google Scholar
  10. Dreyer, W. J. (1984). Molecular evolution, antibody formation, and embryogenesis, in: “The Impact of Protein Chemistry on the Biomedical Sciences,” A. N. Schechter, A. Dean, R. F. Goldberger, eds. Academic Press, New York.Google Scholar
  11. Edman, P. and Begg, G. (1967). A protein sequenator. Eur. J. Biochem. 1:80–91.PubMedCrossRefGoogle Scholar
  12. Fujita, S. C., Zipursky, S. L., Benzer, S., Ferrus, A. and Shotwell S. L. (1982). Monoclonal antibodies against the Drosophila nervous system. Proc. Natl. Acad. Sci. USA 79:7929–7933.PubMedCrossRefGoogle Scholar
  13. Grumet, M., Rutishauser, U. and Edelman, G. M. (1983). Neuronglia adhesion is inhibited by antibodies to neural determinants. Science 222:60–62.PubMedCrossRefGoogle Scholar
  14. Grumet, M., Rutishauser, U. and Edelman, G. M. (1984). Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc. Natl. Acad. Sci. USA 81:267–271.PubMedCrossRefGoogle Scholar
  15. Hewick, R. M., Hunkapiller, M. W., Hood, L. E. and Dreyer, W. J. (1981). A gas-liquid solid phase peptide and protein sequenator. J. Biol. Chem. 256:7990–7997.PubMedGoogle Scholar
  16. Hood, L., Campbell, J. and Elgin, S. (1975). The organization, expression and evolution of antibody genes and other multi-gene families. Ann. Rev. Genet. 9:305–353.PubMedCrossRefGoogle Scholar
  17. Hood, L., Huang, H. V. and Dreyer, W. J. (1977). The area code hypothesis: The immune system provides clues to understanding the genetic and molecular basis of cell recognition during development. J. Supramol. Struct. 7:531–559.PubMedCrossRefGoogle Scholar
  18. Huang, H., and Dreyer, W. J. (1978). Bursectomy in ovo blocks the generation of immunoglobulin diversity. J. Immunol. 121:1738–1747.PubMedGoogle Scholar
  19. Horvath, S. J., Firca, J., Graham, C., Hunkapiller, T., Caruthers, M., Hunkapiller, M. W., and Hood, L. (1984). An automated DNA synthesizer employing nucleoside 3’ phosphoramidites. (Submitted for publication).Google Scholar
  20. Hunkapiller, M. W., Lujon, E., Ostrander, F. and Hood, L. E. (1983). Isolation of microgram quantities of proteins from Polyacrylamide gels for amino acid sequence analysis. Meth. Enzymol. 91:227–236.PubMedCrossRefGoogle Scholar
  21. Katz, D. H. (1977). Lymphocyte Differentiation, Recognition, and Regulation. Academic Press, New York.Google Scholar
  22. Kent, S. B. H. (1980). New aspects of solid-phase peptide synthesis, in: “Biomedical Polymers,” E. P. Goldberg and A. Nakajima. eds. Academic Press, New York.Google Scholar
  23. KCJrzinger, K., Reynolds, T., Germain, R. N., Davignon, D., Martz, E., and Springer, T. A. (1981). A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J. Immunol. 127:596–602.Google Scholar
  24. KCJrzinger, K. and Springer, T. A. (1982). Purification and structural characterization of LFA-1, a lymphocyte function-associated antigen, and Mac-1, a related macrophage differentiation antigen. J. Biol. Chem. 257:12412–12418.Google Scholar
  25. Leder, P. (1982). The genetics of antibody diversity. Scientific Am. 246:102–115.CrossRefGoogle Scholar
  26. Maniatis, T., Hardison, R. C., Lacy, E., Lauer, J., O’Connell, C., Quon, D., Sim, G. K. and Efstratiadis, A. (1978). The isolation of structural genes from libraries of eukaryotic DNA. Cell 15:687–701.PubMedCrossRefGoogle Scholar
  27. Milstein, C. and Lennox, E. (1980). The use of monoclonal antibody techniques in the study of developing cell surfaces. Curr. Top. Dev. Biol. 14:1–32.PubMedCrossRefGoogle Scholar
  28. Potter, M., Dreyer, W. J., Kuff, E. L., and McIntire, K. R. (1964). Heritable variation in Bence Jones protein structure in an inbred strain of mice. J. Mol. Biol. 8:814–822.PubMedCrossRefGoogle Scholar
  29. Rakic, P. (1982). The role of neuronal-glial cell interaction during brain development, in: “Neuronal-glial Cell Interrelationships,” T. A. Sears, ed. Life Sciences Research Report 20. Springer Verlag, New York.Google Scholar
  30. Rathjen, F. G. and Schachner, M. (1984). Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 3:1–10.PubMedGoogle Scholar
  31. Schachner, M., Faissner, A., Kruse, J., Lindner, J., Meier, D. H., Rathjen, F. G. and Wernecke, H. (1983). Cell type-specificity and developmental expression of neural cell surface components involved in cell interactions and of structurally related molecules. Cold Spring Harbor Symp. Quant. Biol. 48: in press.Google Scholar
  32. Springer, T. A., Galfré, G., Secher, D. S., and Milstein, C. (1979). Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9:301–306.PubMedCrossRefGoogle Scholar
  33. Trowbridge, I. S., and Omary, M. B. (1981). Molecular complexity of leukocyte surface glycoproteins related to the macrophage differentiation antigen Mac-1. J. Exp. Med. 154:1517–1524.PubMedCrossRefGoogle Scholar
  34. Zipursky, S. L., Venkatesh, T. R., Teplow, D. B. and Benzer, S. (1984). Neuronal development in the Drosophila retina: Monoclonal antibodies as molecular probes. Cell 36:15–26.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William J. Dreyer
    • 1
  • Janet Roman
    • 1
  • David B. Teplow
    • 1
  1. 1.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations