Advertisement

Factors that Influence Myocardial Levels of Long-Chain Acyl CoA and Acyl Carnitine

  • J. R. Neely
  • K. H. McDonough

Abstract

High levels of fatty acids frequently have been found to be detrimental to ischemic myocardium (for review see 1). The mechanism of these effects is not understood but several possibilities exist. First, it seems very clear that fatty acids increase myocardial oxygen consumption when compared to carbohydrates (2, 3). The theoretical increase in oxygen consumption if the heart were using 100% lipid compared to 100% carbohydrate is about 13%. However, increases in oxygen consumption at constant workload caused by high levels of fatty acids range from 20 to 50% (2, 3). Obviously, this increase in oxygen consumption under conditions of limited oxygen supply, such as ischemia, may place the heart in a negative energy balance and precipitate a compensatory reduction in function.

Keywords

Lipase Activity Coronary Flow Acetyl Ester Exogenous Fatty Acid Acyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Katz, A.M., & Messineo, F.C. (1981): Circ. Res. 48: 1.PubMedGoogle Scholar
  2. 2.
    Vik-Mo, H., & Mjos, O.D. (1983): In Myocardial Ischemia and Protection (eds) H. Refoum, P. Jynge. & O.D. Mjos, Churchill Livingstone, London, p. 35.Google Scholar
  3. 3.
    Oram, J.F., Bennetch, S.L., & Neely, J.R. (1973): J. Biol. Chem. 248: 5299.PubMedGoogle Scholar
  4. 4.
    Neely, J.R., & Feuvray, D. (1981): Am. J. Pathol. 102: 282.PubMedGoogle Scholar
  5. 5.
    Idell-Wenger, J.A., & Neely, J.R. (1977): In Pathophysiology and Therapeutics of Myocardial Ischemia (eds) A.M. Lefer, G.J. Kellcher, & M.J. Rovetto, Spectrum Publications, Inc., New York, p. 227.Google Scholar
  6. 6.
    Whitmer, J.T., Wenger, J.I., Rovetto, M.J., & Neely, J.R. (1978): J. Biol. Chem. 253: 4305.PubMedGoogle Scholar
  7. 7.
    Whitmer, J.T., Rovetto, M.J., & Neely, J.R. (1974): Fed. Proc. 33: 364.Google Scholar
  8. 8.
    Shug, A.L., Shrago, E., & Bittar, N. (1975): Am. J. Physiol. 228: 689.PubMedGoogle Scholar
  9. 9.
    Liedtke, A.J., Nellis, S., & Neely, J.R. (1978): Circ. Res. 43: 652.PubMedGoogle Scholar
  10. 10.
    Feuvray, D. (1983): In Myocardial Ischemia and Protection (eds) H. Refoum, P. Jynge, & O.D. Mjos, Churchill Livingstone, London, p. 45.Google Scholar
  11. 11.
    Neely, J.R., Rovetto, M.J., Whitmer, J.T., & Morgan, H.E. (1973): Am. J. Physiol. 225: 651.PubMedGoogle Scholar
  12. 12.
    Neely, J.R., Garber, D., McDonough, K., & Idell-Wenger, J. (1979): Perspectives in Cardiovascular Research. Ischemic Myocardium and Antiangina Drugs. Vol. 3, (eds) M.M. Winbury, & Y. Abiko, Raven Press, New York, p. 225.Google Scholar
  13. 13.
    Bielefeld, D.R., Vary, T.C., & Neely, J.R. (1983): Fed. Proc. 42: 1258Google Scholar
  14. 14.
    Henderson, A.H., Craig, R.J., Gorlin, R., & Sonnenblick, E.H. (1970): Cardiovasc. Res. 4: 466.PubMedCrossRefGoogle Scholar
  15. 15.
    Denton, R.M., & Randle, P.J. (1967): Biochenu J. 104: 416.Google Scholar
  16. 16.
    McDonough, K.H., Costello, M.E., & Neely, J.R. (1979): Fed. Proc. 38: 894.Google Scholar
  17. 17.
    Severson, D.L., & Hurley, B. (1982): J. Mol. Cell. Cardiol. 14: 467.PubMedCrossRefGoogle Scholar
  18. 18.
    Lui, M.S., & Kako, K.J. (1975): J. Mol. Cell. Cardiol. 7: 577.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. R. Neely
    • 1
  • K. H. McDonough
    • 2
  1. 1.Department of PhysiologyThe Milton S. Hershey Medical CenterHersheyUSA
  2. 2.Department of PhysiologyLouisiana State University Medical CenterNew OrleansUSA

Personalised recommendations