How do Protein Toxins Kill Cells?

  • Sjur Olsnes
  • Kirsten Sandvig
  • Anders Sundan
  • Kristin Eiklid
  • Alexander Pihl


Diphtheria toxin and ricin, the toxins most frequently used in attempts to construct target-specific cytostatic agents, belong to a group of closely related toxic proteins produced by bacteria and plants. The main reason why these toxins are used for this purpose is their extreme toxicity. This is due to the fact that the active moieties of the toxins possess enzymatic activity. A single molecule may inactivate components required for protein synthesis more rapidly than the cell can produce new ones and hence kill the cell in the course of a few hours.


Vero Cell Diphtheria Toxin Cyanogen Bromide Endocytic Vesicle Toxin Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alving, C.R., Iglewski, B.H., Urban, K.A., Moss, J., Richards, R.L. and Sadoff, J.C. 1980, Binding of diphtheria toxin to phospholipids in liposomes, Proc. Natl, Acad. Sci. USA, 77: 1986.CrossRefGoogle Scholar
  2. Boquet, P. and Pappenheimer, A.M. Jr. 1976, Interaction of diphtheria toxin with mammalian cell membranes, J. Biol. Chem., 251: 5770.PubMedGoogle Scholar
  3. Boquet, P., Silverman, M.S., Pappenheimer, A.M., Jr. and Vernon, W.B. 1976, Binding of Triton X-100 to diphtheria toxin, crossreacting material 45, and their fragments, Proc. Natl. Acad. Sci. USA, 73:4449.PubMedCrossRefGoogle Scholar
  4. Brodsky, W.A., Sadoff, J.G., Durham, J.H., Ehrenspeck, G., Schachner, M. and Iglewski, B.H. 1979, Effects of Pseudomonas toxin A, diphtheria toxin, and cholera toxin on electrical characteristics of turtle bladder, Proc. Natl. Acad. Sci. USA, 76: 3562.PubMedCrossRefGoogle Scholar
  5. Chang, T.M. and Neville, D.M. Jr. 1978, Demonstration of diphtheria toxin receptors on surface membranes from both toxin-sensitive and toxin resistant species, J. Biol. Chem., 253: 6866.PubMedGoogle Scholar
  6. Chung, D.W. and Collier, R.J. 1977, Infect. Immun., 16: 832.PubMedGoogle Scholar
  7. Donovan, J.J., Simon, M.I., Draper, R.K. and Montai, M. 1981, Diphtheria toxin forms transmembrane channels in planar lipid bilayers, Proc. Natl. Acad. Sci. USA, 78: 172.PubMedCrossRefGoogle Scholar
  8. Dorland, R.B., Middlebrook, J.L. and Leppla, S.H. 1981, Effect of ammonium chloride on receptor-mediated uptake of diphtheria toxin by Vero cells, Exp. Cell Res., 134: 319.PubMedCrossRefGoogle Scholar
  9. Draper, R.K. and Simon, M.I. 1980, The entry of diphtheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement, J. Cell Biol., 87: 849.PubMedCrossRefGoogle Scholar
  10. Duncan, J.L. and Groman, N.B. 1969, Activity of diphtheria toxin. II. Early events in the intoxication of HeLa cells, J. Bacteriol., 98: 963.PubMedGoogle Scholar
  11. Eiklid, K., Olsnes, S. and Pihl, A. 1980, Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells, Exp. Cell Res., 126:321.PubMedCrossRefGoogle Scholar
  12. Eiklid, K. and Olsnes, S. 1980, Interaction of Shigella Shigae cytotoxin with receptors on sensitive and insensitive cells, J. Receptor Res., 1: 199.Google Scholar
  13. FitzGerald, D., Morris, R.E. and Saelinger, C.B. 1980, Receptor-mediated internalization of Pseudomonas toxin by mouse fibroblasts, Cell 21: 867.PubMedCrossRefGoogle Scholar
  14. Funatsu, G., Yoshitake, S. and Funatsu, M. 1978, Primary structure of Ile chain of ricin D, Agric. Biol. Chem. 42: 501.CrossRefGoogle Scholar
  15. Funatsu, G., Kimura, M. and Funatsu, M. 1979, Primary structure of Ala chain of ricin D, Agric. Bio. Chem. 43: 2221.CrossRefGoogle Scholar
  16. Gonatas, N.K., Stieber, A., Kim, S.U., Graham, D.I. and Avrameas, S. 1975, Internalization of neuronal plasma membrane ricin receptors into the Golgi apparatus, Exp. Cell Res., 94: 426.PubMedCrossRefGoogle Scholar
  17. Gonatas, N.K., Kim, S.U., Stieber, A, and Avrameas, S. 1977, Internalization of lectins in neuronal GERL, J. Cell. Biol., 73: 1.PubMedCrossRefGoogle Scholar
  18. Kagan, B.L., Finkelstein, A. and Colombini, M. 1981, Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes, Proc. Natl. Acad. Sci. USA, 78: 4950.PubMedCrossRefGoogle Scholar
  19. Kayser, G., Lambotte, P., Falmagne, P., Capiau, C., Zanen, J. and Ruysschaert, J.M. 1981, A CNBR peptide located in the middle region of diphtheria toxin fragment B includes conductance change in lipid bilayers, Biochem. Biophys. Res. Commun. 99: 358.PubMedCrossRefGoogle Scholar
  20. Kessel, M. and Klink, F. 1980, Archebacterial elongation factor is ADP-ribosylated by diphtheria toxin, Nature, 287: 250.PubMedCrossRefGoogle Scholar
  21. Kim, K. and Groman, N.B. 1965, Mode of inhibition of diphtheria toxin by ammonium chloride, J. Bacteriol., 90: 1557.PubMedGoogle Scholar
  22. Lambotte, P., Falmagne, P., Capiau, C., Zanen, J., Ruysschaert, J.M. and Dirkx, J. 1980, Primary structure of diphtheria toxin fragment B: Structural similarities with lipid binding domains, J. Cell Biol., 87: 837.PubMedCrossRefGoogle Scholar
  23. Leppla, S.H., Martin, O.C. and Muehl, L.A. 1978, The exotoxin of P.aeruginosa: A proenzyme having an unusual mode of activation, Biochem. Biophys. Res. Commun., 81: 532.PubMedCrossRefGoogle Scholar
  24. Leppla, S.H., Dorland, R.B. and Middlebrook J.L. 1980, Inhibition of diphtheria toxin degradation and cytotoxic action by chloroquine, J. Biol. Chem., 255: 2247.PubMedGoogle Scholar
  25. Lory, S. and Collier, R.J. 1980, Diphtheria toxin: Nucleotide binding and toxin heterogeneity, Proc. Natl. Acad. Sci. USA, 77: 267.PubMedCrossRefGoogle Scholar
  26. Lory, S., Carroll, S.F. and Collier, R.J. 1980a, Ligand interactions of diphtheria toxin, II. Relationships between the NAD site and the P-site, J. Biol. Chem., 255: 12016.PubMedGoogle Scholar
  27. Lory, S., Carroll, S.F., Bernard, P.D. and Collier, R.J. 1980b, Ligand interations of diphtheria toxin. I. Binding and hydrolysis of NAD, J. Biol. Chem., 255: 12011.PubMedGoogle Scholar
  28. Marnell, M.H., Stookey, M., and Draper, R.K. 1982, Monensin blocks the transport of diphtheria toxin to the cell cytoplasm, J. Cell Biol. 93: 57.PubMedCrossRefGoogle Scholar
  29. Mekada, E., Uchida, T. and Okada, Y. 1979, Modification of the cell surface with neuraminidase increaes the sensitivities of cells to diphtheria toxin and Pseudomonas aeruginosa exotoxin, Exp. Cell Res., 123: 137.PubMedCrossRefGoogle Scholar
  30. Mekada, E., Uchida, T. and Okada, Y. 1981, Methylamine stimulates the action of ricin toxin but inhibits that of diphtheria toxin, J. Biol. Chem., 256: 1225.PubMedGoogle Scholar
  31. Middlebrook, J.L., Dorland, R.B. and Leppla, S.H. 1978, Association of diphtheria toxin with Vero cells. Demonstration of a receptor, J. Biol. Chem., 253: 7325.PubMedGoogle Scholar
  32. Middlebrook, J.L. 1981, Effect of energy inhibitors on cell surface diphtheria toxin receptor numbers, J. Biol. Chem., 256: 7898.PubMedGoogle Scholar
  33. Moehring, T.J. and Crispell, J.P. 1974, Biochem. Biophys. Res. Commun., 60: 1446.PubMedCrossRefGoogle Scholar
  34. Moynihan, M.R. and Pappenheimer, A.M. Jr. 1981, Kinetics of adenosinediphosphoribosylation of elongation factor 2 in cells exposed to diphtheria toxin, Infect. Immun., 32: 575.PubMedGoogle Scholar
  35. Nicolson, G.L. 1974, Ultrastructural analysis of toxin binding and entry into mammalian cells, Nature, 251: 628.PubMedCrossRefGoogle Scholar
  36. Nicolson, G.L., Lacorbiere, M. and Ekhart, W. 1975a, Qualitative and quantitative interactions of lectins with untreated and neuraminidase-treated normal, wild-type and temperature-sensitive polyoma-transformed fibroblasts, Biochemistry, 14: 172.PubMedCrossRefGoogle Scholar
  37. Nicolson, G.L., Lacorbiere, M. and Hunter, T.R. 1975b, Mechanism of cell entry and toxicity of an affinity-purified lectin from Ricinus communis and its differential effects on normal and virus-transformed fibroblasts, Cancer Res., 35: 144.PubMedGoogle Scholar
  38. Olsnes, S. and Abraham, A.K. 1979, Elongation-factor-2-induced sensitization of ribosomes to modeccin. Evidence for specific binding of elongation factor 2 to ribosomes in the absence of nucleotides, Eur. J. Biochem., 93: 447.PubMedCrossRefGoogle Scholar
  39. Olsnes, S. and Pihl, A. 1982, in “The molecular action of toxins and viruses”, P. Cohen and S. van Heyningen, eds. Elsevier/ North Holland, Amsterdam.Google Scholar
  40. 01.
    Snes, S., Reisbig, R. and Eiklid, K. 1981, Subunit structure of Shigella cytotoxin, J. Biol. Chem., 256: 8732.Google Scholar
  41. Olsnes, S., Sandvig, K., Eiklid, K. and Pihl, A. 1978, Properties and action mechanism of the toxic lectin modeccin: Interaction with cell lines resistant to modeccin, abrin and ricin, J. Supramol. Struct., 9: 15.PubMedCrossRefGoogle Scholar
  42. Olsnes, S., Sandvig, K., Refsnes, K. and Pihl, A. 1976, Rates of different steps involved in the inhibition of protein synthesis by the toxic lectins abrin and ricin, J. Biol. Chem., 257: 3985.Google Scholar
  43. Pappenheimer, A.M. Jr. 1977, Diphtheria toxin, Ann. Rev. Biochem., 46: 69.PubMedCrossRefGoogle Scholar
  44. Proia, R.L., Eidels, L. and Hart, D.A. 1981, Diphtheria toxin: Receptor Interactions. Characterization of the receptor interaction with the nucleotide-free toxin, the nucleotide-bound toxin, and the B fragment of the toxin, J. Biol. Chem., 256: 4991.PubMedGoogle Scholar
  45. Proia, R.L., Hart, D.A. and Eidels, L. 1979, Interaction of diphtheria toxin with phosphorylated molecules, Infect. Immun., 26: 942.PubMedGoogle Scholar
  46. Proia, R.L., Wray, S.K., Hart, D.A., and Eidels, L. 1980, Characterization and affinity labelling of the cationic phosphate-binding (nucleotide binding) peptide located in the receptor-binding region of the B fragment of diphtheria toxin, J. Biol. Chem., 255: 12025.PubMedGoogle Scholar
  47. Ray, B. and Wu, H.C. 1981, Enhancement of cytotoxicities of ricin and Pseudomonas toxin in Chinese hamster ovary cells by nigericin, Mol. Cell. Biol., 1: 552.PubMedGoogle Scholar
  48. Reisbig, R., Olsnes, S., and Eiklid, K. 1981, The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60S ribosomal subunit, J. Biol. Chem., 256: 8739.PubMedGoogle Scholar
  49. Rosen, S.W. and Hughes, R.C. 1977, Effects of neuraminidase on lectin binding by wild-type and ricin-resistant strains of hamster fibroblasts, Biochemistry, 16: 4908.PubMedCrossRefGoogle Scholar
  50. Sanai, Y., Morihara, K., Tsuzuki, H., Homma, J.Y., and Kato, I. 1980, Proteolytic cleavage of exotoxin A from Pseudomonas aeruginosa. Formation of an ADP ribosyltransferase active fragment by the action of Pseudomonas elastase, FEBS letters, 120:131.PubMedCrossRefGoogle Scholar
  51. Sandvig, K., Olsnes, S. and Pihl, A. 1976, Kinetics of the binding of the toxic lectins abrin and ricin to surface receptors of human cells, J. Biol. Chem., 251: 3977.PubMedGoogle Scholar
  52. Sandvig, K., Olsnes, S. and Pihl, A. 1978, Binding, uptake and degradation of the toxic proteins abrin and ricin by toxin-resistant cell variants, Eur. J. Biochem., 82: 13.PubMedCrossRefGoogle Scholar
  53. Sandvig, K., Olsnes, S. 1979, Effect of temperature on the uptake, excretion and degradation of abrin and ricin by HeLa cells, Exp. Cell Res., 121: 15.PubMedCrossRefGoogle Scholar
  54. Sandvig, K., Olsnes, S. and Pihl, A. 1979, Inhibitory effect of ammonium chloride and chloroquine on the entry of the toxic lectin modeccin into HeLa cells, Biochem. Biophys. Res.Commun., 90:648.PubMedCrossRefGoogle Scholar
  55. Sandvig, K. and Olsnes, S. 1981, Rapid entry of nicked diphtheria toxin into cells at low pH. Characterization of the entry process and effects of low pH on the toxin molecule, J. Biol. Chem., 256: 9068.PubMedGoogle Scholar
  56. Sandvig, K. and Olsnes, S. 1982, Entry of the toxic proteins abrin, modeccin, ricin, and diphtheria toxin into cells. II. Effect of pH, metabolic inhibitors, and ionophores and evidence for toxin penetration from endocytic vesicles, J. Biol. Chem., 257: 7504.PubMedGoogle Scholar
  57. Van Ness, B.G., Howard, J.B. and Bodley, J.W. 1980, ADP-ribosy-lation of elongation factor 2 by diphtheria toxin. NMR spectra and proposed structures of ribosyl-diphthamide and its hydrolysis products, J. Biol. Chem., 255: 10710.PubMedGoogle Scholar
  58. Vasil, M.L., Kabat, D. and Iglewski, B.H. 1977, Structure-activity relationships of an exotoxin of Pseudomonas aeruginosa, Infect. Immun., 16: 353.PubMedGoogle Scholar
  59. Villafranca, J.E. and Robertus, J.D. 1981, J. Biol. Chem., 256: 554.PubMedGoogle Scholar
  60. Yamaizumi, M., Mekada, E., Uchida, T. and Okada, Y. 1978, One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell, Cell, 15: 245.PubMedCrossRefGoogle Scholar
  61. Youle, R.J. and Neville, D.M. Jr. 1979, Receptor-mediated transport of the hybrid protein ricin-diphtheria toxin fragment A with subsequent ADP-ribosylation of intracellular elongation factor II, J. Biol. Chem., 254: 11089.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Sjur Olsnes
    • 1
  • Kirsten Sandvig
    • 1
  • Anders Sundan
    • 1
  • Kristin Eiklid
    • 1
  • Alexander Pihl
    • 1
  1. 1.Norsk Hydro’s Institute for Cancer Research and The Norwegian Cancer SocietyMontebello, OsloNorway

Personalised recommendations