Drug Targeting in Cancer Therapy

  • George Poste


Progress in cancer chemotherapy over the last twenty years has produced important gains in the treatment of testicular germ cell tumors, choriocarcinoma, Burkitt’s lymphoma, Hodgkins disease, and several childhood cancers.1 Progress in treating the three most common solid malignancies of man arising in breast, lung and colon is less impressive, however, and the majority of patients with these tumors die of metastatic disease, despite assault by ever larger combinations of drugs. Two factors are responsible for limiting the effectiveness of current therapeutic approaches. First, the presence within the same tumor of subpopulations of cells that differ widely in their responses to cytotoxic drugs and other agents used in cancer treatment means that therapy will be successful only if this diversity can be circumvented.2,3 Second, the lack of selectivity of most anticancer agents for tumor cells causes significant toxicity to normal tissues with resulting problems in clinical management, patient compliance and reduced quality of life.


Drug Carrier Target Drug Delivery Particulate Carrier Extravascular Compartment Fenestrated Capillary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.T. DeVita, Jr., S. Hellman and S.A. Rosenberg (eds) “Cancer: Principles and Practice of Oncology”, Lipincott, Philadelphia (1982).Google Scholar
  2. 2.
    G. Poste and I.J. Fidler, The pathogenesis of cancer metastasis, Nature 283:139 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    G. Poste, Experimental systems for analysis of the malignant phenotype, Cancer Met. Rev. 1:141 (1982).CrossRefGoogle Scholar
  4. 4.
    P. Newmark, Priority by press release. Nature 304:108 (1983)PubMedCrossRefGoogle Scholar
  5. 5.
    P. Ehrlich, “Collected Studies on Immunity”, Vol 2. Wiley, New York (reprinted 1906).Google Scholar
  6. 6.
    Y.W. Chien (ed.) “Novel Drug Delivery Systems”, M. Dekker, New York (1982).Google Scholar
  7. 7.
    R.E. Counsell and R.C. Pohland, Lipoproteins as potential site-specific delivery systems for diagnostic and therapeutic agents, J. Med. Chem. 25:1115 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Gregoriadis, J. Senior and A. Trouet (eds.) “Targeting of Drugs”, Plenum Press, New York (1982).Google Scholar
  9. 9.
    S.D. Bruck (ed.) “Controlled Drug Delivery”, CRC Press, Boca Raton (1982).Google Scholar
  10. 10.
    E.P. Goldberg (ed.) “Targeted Drugs”, Wiley-Interscience, New York (1983).Google Scholar
  11. 11.
    G. Poste and R. Kirsh, Site-specific (targeted) drug delivery in cancer therapy, Biotechnology 1:869 (1983).CrossRefGoogle Scholar
  12. 12.
    M.B. Yatvin, H. Muhlensiepen, W. Porschen, J.N. Weinstein and L.E. Feinendegen, Selective delivery of liposome associated cis-dichloro-diamine platinum II by heat and its influence on tumor drug uptake and growth, Cancer Res. 41:1602 (1981).PubMedGoogle Scholar
  13. 13.
    K.J. Widder, A.E. Senyei, and B. Sears, Experimental methods in cancer therapeutics, J. Pharm. Sci. 71:379 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    Anon., GVH disease after marrow transplantation, Lancet 1:491 (1984).Google Scholar
  15. 15.
    L.D. Leserman, P. Machy, C. Devaux and J. Barbet, Antibody-bearing liposomes: targeting in-vivo, Biol. Cell 47:111 (1983)Google Scholar
  16. 16.
    R. Levy and R.A. Miller, Tumor therapy with monoclonal antibodies, Fed. Proc. 42:2650 (1983).PubMedGoogle Scholar
  17. 17.
    K. Sikora and M. Smedley, Clinical potential of monoclonal antibodies, Cancer Surveys 1:521 (1983).Google Scholar
  18. 18.
    K.A. Foon, M.I. Bernhard and R.K. Oldham, Monoclonal antibody therapy: assessment by animal tumor models, J. Biol. Resp. Modifiers 1:277 (1982).Google Scholar
  19. 19.
    I.S. Trowbridge and D.L. Domingo, Prospects for the clinical use of cytotoxic monoclonal antibody conjugates in the treatment of cancer, Cancer Surveys 1:543 (1982).Google Scholar
  20. 20.
    R. Arnon and M. Sela, Targeted chemo therapy:drugs conjugated to anti-tumor antibodies, Cancer Surveys 1:429 (1982).Google Scholar
  21. 21.
    G. Poste, R. Kirsh and P. Bugelski, Liposomes as a drug delivery system in cancer therapy in “Novel Approaches to Cancer Therapy”, P. Sunkara, ed., Acadamic Press, New York (1984).Google Scholar
  22. 22.
    M.F. Greaves, “Target” structures and “target” cells for cancer therapy with monoclonal antibodies: finding the candidates, Cancer Surveys 1:451 (1982).Google Scholar
  23. 23.
    R.W. Baldwin and M.V. Pimm, Antitumor monoclonal antibodies for radioimmunodetection of tumors and drug targeting, Cancer Met. Rev. 2:89 (1983).CrossRefGoogle Scholar
  24. 24.
    S. Olsnes and A. Pihl, Cytotoxic proteins with intracellular site action: mechanism of action and anti-cancer properties, Cancer Surveys 1:467 (1982).Google Scholar
  25. 25.
    R.E. Oldham, Current status of monoclonal antibodies in cancer therapy, Clin. Immunol. News 4:131 (1983).CrossRefGoogle Scholar
  26. 26.
    G. Kolata, The magic in magic bullets, Science 222:310 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    E.L. Dobson and H.B. Jones, The behaviour of intravenously injected particulate material. Its rate of disappearance from the blood stream as a measure of liver blood flow, Acta Med. Scand. 273:1 (1982).Google Scholar
  28. 28.
    C. Nicolau and G. Poste (eds.) “Liposomes in-vivo”, Biol. Cell. Vol 47, No. 1. (1983).Google Scholar
  29. 29.
    A.D. Bangham, (ed.) “Liposome Letters”, Acadamic Press, London (1983).Google Scholar
  30. 30.
    G. Poste, R. Kirsh and T. Koestler, The challenge of liposome targeting in-vivo, in “Liposome Technology” G. Gregoriadis, ed., CRC Press, Boca Raton (1984).Google Scholar
  31. 31.
    G. Poste, C. Bucana, A. Raz, P. Bugelski, R. Kirsh and I.J. Fidler, Analysis of the fate of systemically administered liposomes and implications for their use in drug delivery, Cancer Res. 42:1412 (1982).PubMedGoogle Scholar
  32. 32.
    G. Tomlinson, Microsphere drug delivery systems for drug targeting and controlled release, Int. J. Pharm. Techno1. Prod. Manuf. in press.Google Scholar
  33. 33.
    G. Poste and G.L. Nicolson, Experimental systems for analysis of the surface properties of metastatic tumor cells, in: “Biomembranes”, Volume II, A. Nowotny, ed., Plenum, New York (1983).Google Scholar
  34. 34.
    G.L. Nicolson and G. Poste, Tumor cell diversity and host responses in cancer metastasis. Host immune responses and therapy of metastases, Curr. Concepts Cancer VII:3 (1983).Google Scholar
  35. 35.
    G.L. Nicolson and G. Poste, Tumor cell diversity and host responses in cancer metastasis. 1. Properties of metastatic cells, Curr. Problem Cancer 7:1 (1982).CrossRefGoogle Scholar
  36. 36.
    H.I. Peterson (ed.) “Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors”, CRC, Boca Raton (1979).Google Scholar
  37. 37.
    L.J. Anghileri (ed.) “General Processes of Radiotracer Localization” CRC, Boca Raton (1982).Google Scholar
  38. 38.
    J. Folkman and C. Haudenschild, Induction of capillary growth in-vitro, in “Cellular Interactions”, J.T. Dingle and J.L. Gordon, eds., Elsevier, Amsterdam (1981).Google Scholar
  39. 39.
    G. Poste, Liposome targeting in-vivo: Problems and opportunities. Biol. Cell. 47:19 (1983).Google Scholar
  40. 40.
    R.J. Parker, S.M. Sieber and J.N. Weinstein, Effect of Liposome encapsulation of a fluorescent dye on its uptake by the lymphatics of the rat, Pharmacology 23:128 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    E. Mayhew, Y.M. Rustum and F. Szoka, Therapeutic efficacy of cytosine arabinoside trapped in liposomes, in “Targeting of Drugs”, G. Gregoriadis, J. Senior and A. Trouet, eds., Plenum, New York (1982).Google Scholar
  42. 42.
    C.A. Hunt, Liposomes disposition in-vivo. V. Liposome stability in plasma and implications for drug carrier function, Biochim. Biophys. Acta 719:450 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    R.T. Profitt, L.E. Williams, C.A. Presant, G.W. Tin, J.A. Uliana, R.C. Gamble and J.D. Baideschwieler, Liposomal blockade of the reticuloendothelial system: Improved tumor imaging with small unilamellar vesicles, Science 220:502 (1983).CrossRefGoogle Scholar
  44. 44.
    L. Weiss and R.O. Greep, “Histology”, McGraw-Hill, San Francisco (1977).Google Scholar
  45. 45.
    G.G. Schneeberger, Proteins and vesicular transport in capillary endothelium, Fed. Proc. 42:2419 (1983).PubMedGoogle Scholar
  46. 46.
    M. Bundgaard, Vesicular transport in capillary endothelium. Does it occur?, Fed. Proc.42:2425 (1983).PubMedGoogle Scholar
  47. 47.
    R.M. Pino and E. Essner, Permeability of rat choriocapillaries to hemeproteins. Restriction of tracers by a fenestrated endothelium, J. Histochem. and Cytobiochem. 29: 281 (1981).CrossRefGoogle Scholar
  48. 48.
    G. Poste, C. Bucana and I.J. Fidler, Stimulation of host response against metastatic tumors by liposome-encapsulated immunomodulators in: “Targeting of Drugs”, G. Gregoriadis, J. Senior and A. Trouet, eds., Plenum, New York (1982).Google Scholar
  49. 49.
    K.J. Hwang, K.F.S. Luk and P.L. Beaumier, Volume of distribution and transcapillary passage of small unilamellar vesicles, Life Sci. 31:949 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    G. Lubec, K. Kuhn, U. Latzka and E. Reale, Glomerular permeability for proteins of high molecular weight entrapped in liposomes, Renal Physiol. 4:131 (1981).PubMedGoogle Scholar
  51. 51.
    A.P. Fishman, (ed.), “Endothelium” N.Y. Acad. Sci., New York (1982).Google Scholar
  52. 52.
    L.O. Simpson, Biological thixotropy of basement membranes: the key to the understanding of capillary permeability, in: “The Committee in Postgraduate Medical Education”, D. Garlick, ed., The University of New South Wales (1981).Google Scholar
  53. 53.
    G. Gabbiani and G. Majno, Pathophysiology of small vessel permeability, in: “Microcirculation”, G. Kaley and B.M. Altura, eds., Vol III (1980).Google Scholar
  54. 54.
    V.J. Caride and B.L. Zaret, Liposome accumulation in regions of experimental myocardial infarction, Science 198:735 (1977).PubMedCrossRefGoogle Scholar
  55. 55.
    T.M. Mueller, M.L. Marcus, H.E. Mayer, J.K. Williams and K. Hermsmeyer, Liposome concentration in canine ischemic myocardium and depolarized myocardial cells, Cir. Res. 49:405 (1981).CrossRefGoogle Scholar
  56. 56.
    T.N. Palmer, V.J. Caride, L.A. Fernandez, and J. Twickler, Liposome accumulation in ischaemic intestine following experimental mesenteric occlusion, Bioscience Reports 1:337 (1981).PubMedCrossRefGoogle Scholar
  57. 57.
    R.A. Willis, “Pathology of Tumors”, Butterworths, London (1973).Google Scholar
  58. 58.
    B.A. Warren, The vascular morphology of tumors, in: “Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors”, H.I. Peterson, eds., CRC Press Inc., Boca Raton (1979).Google Scholar
  59. 59.
    H. Abrams, “Angiography”, Little Brown and Co., Boston (1961).Google Scholar
  60. 60.
    R.J. Goldacre, and B. Sylven, On the access of blood-borne dyes to various tumor regions, Br. J. Cancer 16:306 (1981).CrossRefGoogle Scholar
  61. 61.
    P. Gullino and F.H. Grantham, The vascular space of growing tumors, Cancer Res. 24:1727 (1964).PubMedGoogle Scholar
  62. 62.
    J.C.E. Underwood and I. Carr, The ultrastructure and permeability characteristics of the blood vessels of a transplantable rat sarcoma, J. Pathol. 107:157 (1972).PubMedCrossRefGoogle Scholar
  63. 63.
    A. Martinet-Palomo, Ultrastructural modifications of intracellular junctions in some epithelial tumors, Lab. Invest. 22:605 (1970).Google Scholar
  64. 64.
    P.F. Schatski and A. Newsome, Neutralized lanthanum solution: A largely noncolloidal ultrastructural tracer, Stain Tech. 50:171 (1975).Google Scholar
  65. 65.
    D.M. Long, F.K. Multer, A.G. Greenburg, G.W. Peskin, E.C. Lasser, W.G. Wickham and C.M. Sharts, Tumor imaging with x-rays using macrophage uptake of radiopaque fluorocarbon emulsions, Surg. 84:104 (1978).Google Scholar
  66. 66.
    P. Bugelski, R. Kirsh and G. Poste, A new histochemical method for measuring intratumoral macrophages and macrophage recruitment into experimental metastases, Cancer Res., in press.Google Scholar
  67. 67.
    G. Gregoriadis and E.D. Neerunjun, Homing of liposomes to target cells, Biochem Biophys. Res. Commun. 65:537 (1975).PubMedCrossRefGoogle Scholar
  68. 68.
    G. Gregoriadis, E.D. Neerunjun and R. Hunt, Fate of liposome-associated agents injected into normal and tumor-bearing rodents; Attempts to improve localization in tumor tissues, Life Sci. 21:357 (1977).PubMedCrossRefGoogle Scholar
  69. 69.
    M.B. Yatvin, T.C. Cree and J.I. Gipp, Hyperthermia-mediated targeting of liposome-assooiated anti-neoplastic drugs, in: “Targeting of Drugs”, G. Gregoriadis, J. Senior and A Trouet, eds., Plenum Press, New York (1982).Google Scholar
  70. 70.
    K.R. Patel, M.P. Li and J.D. Baldeschwieler, Suppression of liver uptake of liposomes by dextran sulfate 500, Proc. Natl. Acad. Sci USA, 80:6518 (1983).PubMedCrossRefGoogle Scholar
  71. 71.
    E.L. Dobson and H.B. Jones, The behaviour of intravenously injected particulate material. Its rate of disappearance from the bloodstream as a measure of liver blood flow, Acta Med. Scand. 273:1 (1982).Google Scholar
  72. 72.
    G. Poste and R. Greig, On the genesis and regulation of cellular heterogeneity in malignant tumors, Invasion and Metastasis 2:137 (1982).Google Scholar
  73. 73.
    J.H. Goldie, New thoughts on resistance to chemotherapy, Hosp. Practice 18:165 (1983).Google Scholar
  74. 74.
    L. Olsson, Phenotypic diversity in leukemia cell populations, Cancer Met. Rev. 2:153 (1983).CrossRefGoogle Scholar
  75. 75.
    K.S. Webb, J.L. Ware S.F. Parks, W.H. Briner and D.F. Paulson, Monoclonal antibodies of different epitopes on a prostate tumor-associated antigen: Implications for immunotherapy, Cancer Immunol. Immunother. 14:155 (1983).PubMedCrossRefGoogle Scholar
  76. 76.
    P. Machy, J. Barbet and L.D. Leserman, Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate, Proc. Natl. Acad. Sci. USA, 79:4148 (1982).PubMedCrossRefGoogle Scholar
  77. 77.
    K.S. Bragman, T.D. Heath and D. Papahadjopoulos, Simultaneous interaction of monoclonal antibody-targeted liposomes with two receptors on K562 cells. Biochim Biophys. Acta 730:187 (1983).PubMedCrossRefGoogle Scholar
  78. 78.
    G. Poste and I.J. Fidler, Stimulation of macrophage-mediated destruction of lung metastases by administration of immuno-modulators encapsulated in liposomes, in “Liposomes, drugs and immunocompetent cell functions”, C. Nicolau and A Paraf, eds., Academic Press, New York (1981).Google Scholar
  79. 79.
    I.J. Fidler and G. Poste, Macrophage-mediated destruction of malignant tumor cells and new strategies for the therapy of metastatic disease. Springer Semin. Immunopathol. 5:161 (1982).PubMedCrossRefGoogle Scholar
  80. 80.
    G. Poste and R. Kirsh, Liposome-encapsulated macrophage activation agents and active non-specific immunotherapy of neoplastic disease, in: “Cell Function and Differentiation”, Part A, G. Akoyounoglou, A.E. Evangelopoulos, J. Georgatsos, G. Palaiologos, A. Trakatellis, and C.P. Tsiganos, eds., A.R. Liss, New York (1982).Google Scholar
  81. 81.
    G. Poste and I.J. Fidler, Therapeutic amplification of macrophage-mediated destruction of tumor cells: an approach to cancer therapy that addresses the problem of tumor cell heterogeneity, in: “Design of Models for Testing Cancer Therapeutic Agents”, I.J. Fidler and R.J. White, eds., Van Nostrand, New York (1982).Google Scholar
  82. 82.
    R.K. Oldham, Biologicals: new horizons in pharmaceutical development, J. Biol. Resp. Modifiers 2:199 (1983).Google Scholar
  83. 83.
    P. Bugelski, R. Kirsh, J. Sowinski and G. Poste, Changes in the macrophage content of lung metastases at different stages in tumor growth, Cancer Res., in press.Google Scholar
  84. 84.
    J.R. Graybill, P.C. Craven, R.L. Taylor, D.M. Williams and W.E. Magee, Treatment of murine cryptococcosis with liposome-associated amphotericin B, J. Infect. Dis. 145:748 (1982).PubMedCrossRefGoogle Scholar
  85. 85.
    G. Lopez-Berestein, R. Mehta, R.L. Hopfer, K. Mills, L. Kasi, K. Mehta, V. Fainstein, M. Luna, E.M. Hersh and R. Juliano, Treatment and prophylaxis of disseminated infection due to Candida albicans in mice with liposome-encapsulated amphotericin B, J. Infec. Dis. 5:939 (1983).CrossRefGoogle Scholar
  86. 86.
    R.L. Taylor, D.M. Williams, P.C. Craven, J.R. Graybill, D.J. Drutz and W.E. Magee, Amphotericin B in liposomes: a novel therapy for histoplasmosis, Am. Rev. Respir. Dis. 125:610 (1982).PubMedGoogle Scholar
  87. 87.
    M.W. Fountain, C. Dees, and R.D. Shultz, Enhanced intracellular killing of Staphylococcus aureus by canine monocytes treated with liposomes containing amikacin, gentamicin, kanamycin, and tobramycin, Current Microbiol. 6:373 (1981).CrossRefGoogle Scholar
  88. 88.
    D.W. Mason, P.E. Thorpe and W.C.J. Ross, Elimination of leukaemic cells from rodent bone marrow in-vitro with antibody-ricin conjugates: implications for autologous marrow transplantation in man, Cancer Surveys 1:389 (1982).Google Scholar
  89. 89.
    M. Muirhead, P.J. Martin, B. Torok-Storb, J.W. Uhr and S. Vitetta, Use of an antibody-ricin A-chain conjugate to delete neoplastic B cells from human bone marrow, Blood 62:327 (1983).PubMedGoogle Scholar
  90. 90.
    J. Khato, E.R. Priester, and S.M. Sieber, Enhanced lymph node uptake of melphalan following liposomal entrapment and effects on lymph node metastasis in rats, Cancer Treatment Rep. 66:517 (1982).Google Scholar
  91. 91.
    B. Ryman and G.M. Barratt, Liposomes — further considerations of their possible role as carriers of therapeutic agents, in: “Targeting of Drugs”, G. Gregoriadis, J. Senior and A. Trouet, eds., Plenum Press, New York.(1982).Google Scholar
  92. 92.
    M. Hashida, S. Muranishi, S. Sezaki, N. Tanigawa, K. Satomura and Y. Hikasa, Increased lymphatic delivery of bleomycin by microsphere in oil emulsion and its effect on lymph node metastasis, Int. J. Pharm. 2:245 (1979).CrossRefGoogle Scholar
  93. 93.
    J.N. Weinstein, R.J. Parker, A.M. Keenan, S.K. Dower, H.C. Morse, and S.M. Sieber, Monoclonal antibodies in the lymphatics: toward the diagnosis and therapy of tumor metastases, Science 218:1334 (1982).PubMedCrossRefGoogle Scholar
  94. 94.
    M.B. Yatvin and P.I. Lelkes, Clinical prospects for liposomes, Med. Phys. 9:149 (1982).PubMedCrossRefGoogle Scholar
  95. 95.
    R.L. Magin, and J. Weinstein, Delivery of drugs in temperature-sensitive liposomes, in: “Targeting of Drugs” G. Gregoriadis, J. Senior and A. Trouet, eds., Plenum Press, New York (1982).Google Scholar
  96. 96.
    A. Walker, H.M. McCallum, T.E. Wheldon, A.H. Nias and A.S. Abdelaal, Promotion of metastasis of C3H mouse mammary carcinoma by local hyperthermia, Br. J. Cancer 38:561 (1978).PubMedCrossRefGoogle Scholar
  97. 97.
    M. Urano, L. Rice, R. Epstein, H.D. Suit and A.M. Chu, Effect of whole-body hyperthermia on cell survival, metastasis frequency, and host immunity in moderately and weakly immunogenic murine tumors, Cancer Res. 43:1039 (1983).PubMedGoogle Scholar
  98. 98.
    E. Jahde, M.F. Rajewsky and H. Baumgartl, pH distributions in transplanted neural tumors and normal tissues of BDIX rats as measured with pH micoelectrodes, Cancer Res. 42:1498 (1982).PubMedGoogle Scholar
  99. 99.
    K.J. Widder, A.E. Senyei and B. Sears, Experimental methods in cancer therapeutics, J. Pharm. Sci. 71:379 (1982).PubMedCrossRefGoogle Scholar
  100. 100.
    T. Kato, Encapsulated drugs in targeted cancer therapy in: “Controlled Drug Delivery”, S.D. Bruck, ed., CRC Press Boca Raton (1982).Google Scholar
  101. 101.
    J.L. Marx, Suppressing autoimmunity in mice, Science 221:843 (1983).PubMedCrossRefGoogle Scholar
  102. 102.
    W.E. Lynch, G.P. Sartiano and A. Ghaffar, Erythrocytes as carriers of chemotherapeutic agents for targeting to the reticuloendothelial system, Am. J. Hematol. 9:249 (1980).PubMedCrossRefGoogle Scholar
  103. 103.
    E. Haber, Antibodies as models for rational drug design, Biochem. Parmacol. 32:1967 (1983).CrossRefGoogle Scholar
  104. 104.
    Federal Register Food and Drug Administration. Proposed new drug, antibiotic and biologic drug product regulations, 48:26720 (1983).Google Scholar
  105. 105.
    Office of Biologics, Food and Drug Administration, Points to consider in the manufacture of in-vitro monoclonal antibody products subject to licensure (1983).Google Scholar
  106. 106.
    H. Hauser, Methods of preparation of lipid vesicles assessment of their suitability for drug encapsulation, Trends Pharm. Sci. 3:274 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • George Poste
    • 1
    • 2
  1. 1.Smith Kline and French LaboratoriesPhiladelphiaUSA
  2. 2.Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Medical SchoolPhiladelphiaUSA

Personalised recommendations