Endocytosis of Liposomes and Intracellular Fate of Encapsulated Molecules: Strategies for Enhanced Cytoplasmic Delivery

  • Robert M. Straubinger
  • Keelung Hong
  • Daniel S. Friend
  • Nejat Duzgunes
  • Demetrios Papahadjopoulos


Liposomes have evoked considerable interest as carriers of macromolecules, based on their ability to encapsulate a wide variety of biologically active materials and deliver them, functionally intact, to particular in-vivo or in-vitro compartments. Liposomes are adaptable to the requirements of a wide range of experimental conditions, since it is possible to alter such parameters as liposome size, surface charge, bilayer fluidity, and stability. Recently, several groups have shown that it is possible to couple covalently to the liposome surface a variety of ligands, such as immunoglobulins, to promote specificity of lipo-some-cell interaction and to increase the number of liposomes bound to or internalized by cells (Heath et al., 1980; Leserman et al., 1980; Heath et al., 1983).


Endocytic Pathway Intracellular Delivery Phospholipid Vesicle Coated Vesicle Intracellular Fate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T.M. and Cleland, L.G., 1980, Serum-induced leakage of liposome contents, Biochim. Biophys. Acta, 597:418.PubMedCrossRefGoogle Scholar
  2. Arsenis, C., Gordon, J. and Touster, O., 1970, Degradation of nucleic acids by lysosomal extracts of rat liver and Ehrlich ascites tumor cells, J. Biol. Chem., 245:205.PubMedGoogle Scholar
  3. Blumenthal, R., Weinstein, J.N., Sharrow, S.O. and Henkart, P., 1977, Liposome-lymphocyte interaction: saturable sites for transfer and intracellular release of liposome contents, Proc. Nat. Acad. Sci. USA, 75:5603.CrossRefGoogle Scholar
  4. de Duve, C., Wattiaux, R. and Baudhuin, P., 1962, Distribution of enzymes between subcellular fractions in animal tissues, Adv. Enzymol., 24:291.Google Scholar
  5. de Duve, C., de Barsy, T., Poole, B., Trouet, A., Tulkens, P. and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol., 23:2495.PubMedCrossRefGoogle Scholar
  6. Duzgunes, N., Wilschut, J., Fraley, R.T. and Papahadjopoulos, D., 1981, Studies on the mechanisms of membrane fusion: Role of headgroup composition on calcium- and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta, 642:182.PubMedCrossRefGoogle Scholar
  7. Faulk, W.P. and Taylor, G.M., 1971, An immunocolloid method for the electron microscope, Immunochemistry, 8:1081.PubMedCrossRefGoogle Scholar
  8. Finkelstein, M. and Weissman, G., 1978, The introduction of enzymes into cells by means of liposomes, J. Lipid Res., 18:289.Google Scholar
  9. Fraley, R., Delaporta, S. and Papahadjopoulos, D., 1982, Liposome-mediated delivery of TMV RNA into tobacco protoplasts: a sensitive assay for monitoring liposome-protoplast interactions, Proc. Nat. Acad. Sci. USA, 79:1859.PubMedCrossRefGoogle Scholar
  10. Fraley, R., Straubinger, R., Rule, G., Springer, L. and Papahadjopoulos, D., 1981, Liposome-mediated delivery of DNA to cells: enhanced efficiency of delivery by changes in lipid composition and incubation conditions, Biochemistry, 20:6978.PubMedCrossRefGoogle Scholar
  11. Fraley, R., Subramani, S., Berg, P. and Papahadjopoulos, D., 1980, Introduction of liposome-encapsulated SV40 DNA into cells, J. Biol. Chem., 255:10431.PubMedGoogle Scholar
  12. Frens, G., 1973, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions, Nature, 241: 20.Google Scholar
  13. Geoghegan, W.D. and Ackerman, G.A., 1977, Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application, J. Histochem. Cytochem., 25:1187.PubMedCrossRefGoogle Scholar
  14. Goldstein, J., Anderson, R.G.W. and Brown, S., 1979, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature, 279:679.PubMedCrossRefGoogle Scholar
  15. Gregoriadis, G. and Davis, C., 1979, Stability of liposomes in-vivo and in-vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Commun., 89:1287.PubMedCrossRefGoogle Scholar
  16. Gregoriadis, G. and Ryman, B.E., 1972, Fate of protein-containing liposomes injected into rats, Eur. J. Biochem., 24:485.PubMedCrossRefGoogle Scholar
  17. Hagins, W.A. and Yoshikami, S., 1978, Intracellular transmission of visual excitation in vertebrate retinal photoreceptors: electrical effects of chelating agents introduced into rods by vesicle fusion, in: “Vertebrate Photoreceptors”, Fatt, P. and Barlow, H.B., eds., Academic Press, New York.Google Scholar
  18. Handley, D.A., Arbeeny, C.M., Witte, L.D. and Chien, S., 1981, Colloidal gold-low density lipoprotein conjugates as membrane receptor probes, Proc. Natl. Acad. Sci. USA, 78:368.PubMedCrossRefGoogle Scholar
  19. Heath, T., Fraley, R. and Papahadjopoulos, D., 1980, Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab′)2 to the vesicle surface, Science, 210:539.PubMedCrossRefGoogle Scholar
  20. Heath, T., Montgomery, J.A., Piper, J.R. and Papahadjopoulos, D., 19831 Antibody-targeted liposomes: increase in specific cytotoxicity by a liposome dependent drug, Proc. Natl. Acad. USA, 80:1377.CrossRefGoogle Scholar
  21. Heiple, J.M. and Taylor, D.L., 1982, An optical technique for measurement of intracellular pH in single living cells, in: “Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions”, Nuccitelli, R. and Deamer, D.W., eds., A.R. Liss, New York.Google Scholar
  22. Helenius, A., Kartenbeck, J., Simons, K. and Fries, E., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol., 84:404.PubMedCrossRefGoogle Scholar
  23. Hong, K., Friend, D.S., Glabe, C.G. and Papahadjopoulos, D.P., 1983, Liposomes containing colloidal gold are a useful probe of liposome-cell interactions, Biochim. Biophys. Acta, 732:320.PubMedCrossRefGoogle Scholar
  24. Huang, R.T.C., Wahn, K., Klenk, H.-D. and Rott, R., 1980, Fusion between cell membranes and liposomes containing the glycoproteins of influenza virus, Virology, 104:294.PubMedCrossRefGoogle Scholar
  25. Kimelberg, H.K. and Mayhew, E.G., 1978, Properties and biological effects of liposomes and their uses in pharmacology and toxicology, CRC Crit. Rev. Toxicol., 6:25.CrossRefGoogle Scholar
  26. Leserman, L., Barbet, J., Kourilsky, R. and Weinstein, J., 1980, Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A, Nature, 288: 602.PubMedCrossRefGoogle Scholar
  27. Magee, W.E., Goff, C.W., Schoknecht, J., Smith, M.D. and Cherian, K., 1974, The interaction of cationic liposomes containing entrapped HRP with cells in culture, J. Cell Biol., 63:492.PubMedCrossRefGoogle Scholar
  28. Mayhew, E. and Papahadjopoulos, D., 1983, Use of liposomes as a drug carrier system in-vivo, in: “Liposomes”, Ostro, M.J., ed., Marcel Dekker, New York.Google Scholar
  29. Miller, D. and Lenard, J., 1980, Inhibition of vesicular stomatitis virus infection by spike glycoprotein, J. Cell Biol., 84:430.PubMedCrossRefGoogle Scholar
  30. Norberg, B., 1970, Amoeboid movements and cytoplasmic fragmentation of glycerinated leucocytes induced by ATP, Exp. Cell Res., 59:11.PubMedCrossRefGoogle Scholar
  31. Ohkuma, S. and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation by various agents, Proc. Natl. Acad. Sci. USA, 75:3327.PubMedCrossRefGoogle Scholar
  32. Okada, C.Y. and Rechsteiner, M., 1982, Introduction of macro-molecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles, Cell, 29:33.PubMedCrossRefGoogle Scholar
  33. Olson, F., Hunt, C., Szoka, F., Vail, W. and Papahadjopoulos, D., 1979, Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 557:9.PubMedCrossRefGoogle Scholar
  34. Pagano, R.E., Sandra, A. and Takeichi, M., 1978, Interactions of phospholipid vesicles with mammalian cells, Ann. N.Y. Acad. Sci., 308:185.PubMedCrossRefGoogle Scholar
  35. Pagano, R.E. and Weinstein, J.N., 1978, Interaction of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng., 7:435.CrossRefGoogle Scholar
  36. Papahadjopoulos, D., 1968, Surface properties of acidic phospholipids: interaction of monolayers and hydrated liquid-crystals with uni- and bi-valent metal ions, Biochim. Biophys. Acta, 163:240.PubMedCrossRefGoogle Scholar
  37. Papahadjopoulos, D., Cowden, M. and Kimelberg, H., 1973, Role of cholesterol in membranes: effects on phospholipid-protein interactions, membrane permeability and enzymatic activity, Biochim. Biophys. Acta, 330:8.PubMedCrossRefGoogle Scholar
  38. Pastan, I.H. and Willingham, M.C., 1981, Receptor-mediated endocytosis of hormones in cultured cells, Ann. Rev. Physiol., 43:239.CrossRefGoogle Scholar
  39. Poste, G., 1980, The interaction of lipid vesicles (liposomes) with cultured cells and their use as carriers for drugs and macro-molecules, in: “Liposomes in Biological Systems”, Gregoriadis, G. and Allison, A.C., eds., Wiley & Sons, Chichester.Google Scholar
  40. Poste, G. and Papahadjopoulos, D., 1978, The influence of vesicle membrane properties on the interaction of lipid vesicles with cultured cells, Ann. N.Y. Acad. Sci., 308:164.PubMedCrossRefGoogle Scholar
  41. Ralston, E., Hjelmeland, L.M., Klausner, R.D., Weinstein, J.N. and Blumenthal, R., 1981, Carboxyfluorescein as a probe for liposome-cell interactions: Effect of impurities and purification of the dye, Biochim. Biophys. Acta, 649:133.CrossRefGoogle Scholar
  42. Schaefer-Ridder, M., Yang, Y. and Hoffschneider, P.H., 1982, Liposomes as gene carriers: efficient transformation of mouse L cells by thymidine kinase gene, Science, 215:166.PubMedCrossRefGoogle Scholar
  43. Scherphof, G., Roerdink, F., Waite, M. and Parks, J., 1978, Disintegration of phosphatidylcholine liposomes in plasma as the result of interaction with high-density lipoproteins, Biochim. Biophys. Acta, 296:296.CrossRefGoogle Scholar
  44. Straubinger, R.M., Hong, K., Friend, D.S. and Papahadjopoulos, D., 1983, Endocytosis of liposomes and intracellular fate of encapsulated molecules: Encounter with a low pH compartment after internalization in coated vesicles, Cell, 32:1069.PubMedCrossRefGoogle Scholar
  45. Struck, D.K., Hoekstra, D. and Pagano, R.E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, 20: 4093.PubMedCrossRefGoogle Scholar
  46. Szoka, F.C., Jacobson, K. and Papahadjopoulos, D., 1979, The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells, Biochim. Biophys. Acta, 551:295.PubMedGoogle Scholar
  47. Szoka, F.C., Jacobson, K., Derzko, Z. and Papahadjopoulos, D., 1980a, Fluorescence studies on the mechanism of liposome-cell interactions in-vitro, Biochim. Biophys. Acta, 600:1.PubMedCrossRefGoogle Scholar
  48. Szoka, F., Olson, F., Heath, T., Vail, W., Mayhew, E. and Papahadjopoulos, D., 1980b, Preparation of unilamellar liposomes of intermediate size by a combination of reverse phase evaporation and extrusion through polycarbonate membranes, Biochim. Biophys. Acta, 601:559.PubMedCrossRefGoogle Scholar
  49. Szoka, F., Magnusson, K.-E., Wojcieszyn, J., Hou, Y., Derzko, Z. and Jacobson, K., 1981, Use of lectins and polyethylene glycol for fusion of glycolipid-containing liposomes with eukaryotic cells, Proc. Natl. Acad. Sci. USA, 78:1685.PubMedCrossRefGoogle Scholar
  50. Szoka, F. and Papahadjopoulos, D., 1978, Procedure for preparing liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA, 75: 4194.PubMedCrossRefGoogle Scholar
  51. Uchida, T., Kim, J., Yamaizumi, M., Miyake, Y. and Okada, Y., 1979, Reconstitution of lipid vesicles associated with HJV (Sendai virus) spikes, J. Cell Biol., 80:10.PubMedCrossRefGoogle Scholar
  52. Vainstein, A., Atidia, J. and Loyter, A., 1981, Reconstituted Sendai virus envelopes as a biological carrier for microinjection of proteins and DNA molecules into animal cells, in: “Liposomes, Drugs and Immunocompetent Cell Functions”, Nicolau, C. and Paraf, A., eds., Academic Press, New York.Google Scholar
  53. Van Renswoude, J. and Hoekstra, D., 1981, Cell-induced leakage of liposome contents, Biochemistry, 20:540.PubMedCrossRefGoogle Scholar
  54. Volsky, D.J., Cabantchik, M., Beigel, M. and Loyter, A., 1979, Implantation of the isolated human erythrocyte anion channel into plasma membranes of Friend erythroleukemic cells by use of Sendai virus envelopes, Proc. Natl. Acad. Sci. USA, 76:5440.PubMedCrossRefGoogle Scholar
  55. von Tscharner, V. and Radda, G.K., 1981, The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence, Biochim. Biophys. Acta, 643:435.CrossRefGoogle Scholar
  56. Wallach, D.F.H. and Steck, T.L., 1963, Fluorescence techniques in the microdetermination of metals in biological materials, Anal. Chem., 35:1035.CrossRefGoogle Scholar
  57. Wallach, D.F.H., Surgenor, D.M., Soderberg, J. and Delano, E., 1959, Preparation and properties of 3,6-dihydroxy-2,4+-bis-(N,N′-di-(carboxymethyl)-aminomethyl) fluoran: Utilization for the ultramicrodetermination of calcium, Anal. Chem., 31:456.CrossRefGoogle Scholar
  58. Weinstein, J.N., Yoshikami, S., Henkart, P., Blumenthal, R. and Hagins, W.A., 1977, Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker, Science, 195:489.PubMedCrossRefGoogle Scholar
  59. Weissmann, G., Cohen, C. and Hoffstein, S., 1971 Introduction of enzyme by means of liposomes into non-phagocytic human cells in-vitro, Biochim. Biophys. Acta, 498:375.CrossRefGoogle Scholar
  60. White, J., Matlin, K. and Helenius, A., 1981, Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses, J. Cell Biol., 89:674.PubMedCrossRefGoogle Scholar
  61. Wilson, T., Papahadjopoulos, D. and Taber, R., 1979, The introduction of poliovirus MA into cells via lipid vesicles (liposomes) Cell, 17:77.PubMedCrossRefGoogle Scholar
  62. Wu, P., Tin, G.W. and Baldeschwieler, J.D., 1981, Phagocytosis of carbohydrate-modified phospholipid vesicles by macrophage, Proc. Natl. Acad. Sci. USA, 78:2033.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert M. Straubinger
    • 1
  • Keelung Hong
    • 1
  • Daniel S. Friend
    • 2
  • Nejat Duzgunes
    • 1
  • Demetrios Papahadjopoulos
    • 1
  1. 1.Department of Pharmacology, Cancer Research Institute, M-1282University of California San FranciscoSan FranciscoUSA
  2. 2.Department of Pathology, Cancer Research Institute, M-1282University of California San FranciscoSan FranciscoUSA

Personalised recommendations