Skip to main content

Fate of Liposomes In Vivo: Control Leading to Targeting

  • Chapter

Abstract

It is well established (Gregoriadis, 1981) that following intravenous injection, liposomes and entrapped drugs are sooner or later taken up by the reticuloendothelial system (RES). Rate of uptake in particular tissues of the RES depends on vesicle size, surface charge and lipid composition, amount of liposomal lipid given, animal species and physiological state. For instance, a large vesicle size and/or a negative surface charge promote rapid uptake by tissues. Further, depending on the lipid composition of injected liposomes, plasma high density lipoproteins (HDL) will remove phospholipid molecules, destabilize vesicle structure and lead to entrapped drug release into the circulation. Thus, tissues will take up vesicles in various stages of destabilization and with a portion of their drug contents lost.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T.M., 1981, A study of phospholipid interaction between high density lipoprotein and small unilamellar vesicles, Biochim. Biophys. Acta, 640:385.

    Google Scholar 

  • Ashwell, G. and Moreli, A.G., 1976, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol, 41:99.

    Google Scholar 

  • Gregoriadis, G., 1974, Structural requirements for the specific uptake of macromolecules and liposomes by target tissues, in: “Enzyme Therapy in Lysosomal Storage Diseases”, J.M. Tager, G.J.M. Hooghwinkel and W.Th. Daems, eds., North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Gregoriadis, G., 1981, Targeting of drugs: Implications in medicine, The Lancet, 2:241.

    Google Scholar 

  • Gregoriadis, G., 1983, Targeting of drugs with molecules, cells and liposomes, TIPS, 4:304

    CAS  Google Scholar 

  • Gregoriadis, G., ed., 1984, “Liposome-Technology”, vols. I–III, CRC Press Inc., Boca Raton.

    Google Scholar 

  • Gregoriadis, G. and Davis, C., 1979, Stability of liposomes in-vivo and in-vitro is promoted by their cholesterol content and the presence of blood cells, Biochem. Biophys. Res. Comm., 89:1287.

    Google Scholar 

  • Gregoriadis, G. and Meehan, A., 1981, Interaction of antibody-bearing small unilamellar liposomes with antigen-coated cells: the effect of antibody and antigen concentration on the liposomal and cell surface respectively, Biochem. J., 200:211.

    Google Scholar 

  • Gregoriadis, G. and Neerunjun, D., 1975 Homing of liposomes to target cells, Bioche Biophys. Res. Comm., 65:537.

    Article  CAS  Google Scholar 

  • Gregoriadis, G. and Senior, J., 1980, The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation, FEBS Lett., 119:43.

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis, G. and Senior, J., 1984, Targeting of small unilamellar liposomes to the galactose receptor in-vivo, Biochem. Soc. Trans., 12:337.

    Google Scholar 

  • Gregoriadis, G., Neerunjun, D.E. and Hunt, R., 1977, Fate of a liposome-associated agent injected into normal and tumour-bearing rodents. Attempts to improve localization in tumour tissues, Life Sci., 21:357.

    Google Scholar 

  • Gregoriadis, G., Mah, M.M. and Meehan, A., 1981, Interaction of antibody-bearing small unilamellar liposomes with target free antigen in-vitro and in-vivo: Some influencing factors, Biochem. J., 200:203.

    Google Scholar 

  • Hashimoto, Y., Sugawara, M., Masuko, T. and Hojo, H., 1983, Anti-tumour effect of actinomycin D entrapped in liposomes bearing subunits of tumour-specific monoclonal immunoglobulin M antibody, Cancer Res., 43:5328.

    PubMed  CAS  Google Scholar 

  • Heath, T.D., Fraley, R.T. and Papahadjopoulos, D., 1980, Antibody targeting of liposomes: Specific interaction of vesicles conjugated to anti-erythrocyte F(ab’)2, Science, 210:539.

    Article  PubMed  CAS  Google Scholar 

  • Hwang, K.J., Luk, K-F.S. and Beaumier, P.L., 1980, Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: A kinetic study, Proc. Natl. Acad. Sci. USA, 77:4030.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1980, The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in-vivo, Life Sci., 27:2223.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1981, Plasma-induced release of solutes from small unilamellar liposomes is associated with pore formation in the bilayers, Biochem. J., 199:251.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1983, The effect of lipid composition of small unilamellar liposomes containing melphalan and vincristine on drug clearance after injection into mice, Biochem. Pharmacol., 32:609.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1984a, A simple novel method for efficient drug entrapment in liposomes, in: “Liposome Technology”, Vol. I, G. Gregoriadis, ed., CRC Press Inc., Boca Raton.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1984b, Incorporation of Factor VIII into liposomes, in: “Liposome Technology”, Vol. II, G. Gregoriadis, ed., CRC Press Inc., Boca Raton.

    Google Scholar 

  • Kirby, C. and Gregoriadis, G., 1984c, Preparation of liposomes containing Factor VIII for oral treatment of haemophilia, J. Microencap., 1:33.

    Article  CAS  Google Scholar 

  • Kirby, C., Clarke, J. and Gregoriadis, G., 1980, Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum, FEBS Lett., 111:324.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, C., Clarke, J. and Gregoriadis, G., 1980, Effect of the cholesterol content of small unilamellar liposomes on their stability in-vivo and in-vitro, Biochem. J., 186:591.

    Google Scholar 

  • Krupp, L., Chobanian, A.V. and Brecher, I.P., 1976, The in-vivo transformation of phospholipid vesicles to a particle resembling HDL in the rat, Biochem. Biophys. Res. Commun., 72:1251.

    Google Scholar 

  • Martin, F.J. and Papahadjopoulos, D., 1982, Irreversible coupling of immunoglobulin fragments to preformed vesicles, J. Biol. Chem., 257:286.

    Google Scholar 

  • Mayhew, E. and Rustum, Y., 1983, Effect of liposome-entrapped chemo-therapeutic agents on mouse primary and metastatic tumours, Biol. Cell., 47:81.

    Google Scholar 

  • Moreli, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J. and Ashwell, G., 1974, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem., 246:1461.

    Google Scholar 

  • van Oss, C.J., Gillman, CF., Bronson, P.M. and Border, J.JR., 1974, Phagocytosis-inhibiting properties of human serum alpha-1 acid glycoprotein, Immunol. Comm., 3:321.

    Google Scholar 

  • Patel, H.M., Tüzel, N.S. and Ryman, B.E., 1984, Inhibitory effect of cholesterol on the uptake of liposomes by liver and spleen, Biochim. Biophys. Acta, 761:142.

    Google Scholar 

  • Poste, G., 1983, Liposomes targeting in-vivo: Problems and opportunities, Biol. Cell., 47:19.

    Google Scholar 

  • Proffitt, R.T., Williams, L.E., Presant, C.A., Tin, G.W., Uliana, J.A., Gamble, R.C and Baldeschwielar, J.D., 1983, Liposomal blockade of the reticuloendothelial systems: Improved tumour imaging with small unilamellar vesicles, Science, 220:502.

    Google Scholar 

  • Scherphof, G., Roerdink, F., Waite, M. and Parks, I., 1978, Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high density lipoproteins, Biochim. Biophys. Acta, 542:296.

    Google Scholar 

  • Scherphof, G., Damen, J. and Wilschut, J., 1984, Interactions of liposomes with plasma proteins, in: “Liposome Technology”, G. Gregoriadis, ed., CRC Press Inc., Boca Raton.

    Google Scholar 

  • Senior, J. and Gregoriadis, G., 1982a, Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components, Life Sci., 30:2123.

    Article  PubMed  CAS  Google Scholar 

  • Senior, J. and Gregoriadis, G., 1982b, Is half-life of circulating small unilamellar liposomes determined by changes in their permeability?, FEBS Lett., 145:109.

    Article  PubMed  CAS  Google Scholar 

  • Senior, J. and Gregoriadis, G., 1984, Methodology in assessing liposomal stability in the presence of blood, clearance from the circulation of injected animals, and uptake by tissues, in: “Liposome Technology”, Vol. III, G. Gregoriadis, ed., CRC Press Inc., Boca Raton.

    Google Scholar 

  • Senior, J., Gregoriadis, G. and Mitropoulos, K., 1983, Stability and clearance of small unilamellar liposomes: Studies with normal and lipoprotein-deficient mice, Biochim. Biophys. Acta, 760:111.

    Article  PubMed  CAS  Google Scholar 

  • Spanjer, H.H. and Scherphof, G., 1983, Targeting of lactosylceramide-containing liposomes to hepatocytes in-vivo, Biochim. Biophys. Acta, 734:40.

    Google Scholar 

  • Szoka, F. and Mayhew, E., 1983, Alteration of liposome disposition in-vivo by bilayer situated carbohydrates, Biochem. Biophys. Res. Commun., 110:140.

    Google Scholar 

  • Teradaira, R., Kolb-Bachofen, V., Schlepper-Schafer, J. and Kolb, H., 1983, Galactose-particle receptor on liver macrophages. Quantitation of particle uptake, Biochim. Biophys. Acta, 759:306.

    Google Scholar 

  • Toonen, P.A.H.M. and Crommelin, D.J.A., 1983, Immunoglobulins as targeting agents for liposome-encapsulated drugs, Pharm. Weekblad Scientific Edition, 5:269.

    Google Scholar 

  • Tümer, A., Kirby, C., Senior, J. and Gregoriadis, G., 1983, Fate of cholesterol-rich unilamellar liposomes containing 111In-labelled bleomycin after subcutaneous injection into rats, Biochim. Biophys. Acta, 760:119.

    Google Scholar 

  • Tyrrell, D.A. and Ryman, B.E., 1980, Liposomes: Bags of potential, Essays Biochem., 16:49.

    Google Scholar 

  • Wolff, B. and Gregoriadis, G., 1984, The use of monoclonal anti-Thy1, IgG1 for the targeting of liposomes to AKR-A cells in-vitro and in-vivo, Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gregoriadis, G., Senior, J., Wolff, B., Kirby, C. (1984). Fate of Liposomes In Vivo: Control Leading to Targeting. In: Gregoriadis, G., Poste, G., Senior, J., Trouet, A. (eds) Receptor-Mediated Targeting of Drugs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4862-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4862-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4864-1

  • Online ISBN: 978-1-4684-4862-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics