Metabolic Responses of Embryonic Sea Birds to Temperature

  • William R. Dawson


Surprisingly little information is available concerning metabolic responses of embryonic sea birds to temperature, despite the challenging thermal conditions under which many species nest. Knowledge of such responses should be useful in tracing fully the ontogeny of thermoregulation in these animals and in defining the thermal limits for development. It should also allow identification of acute effects of variations in egg temperature and any compensatory mechanisms that serve to damp these effects. Development of a comprehensive understanding of these topics for sea birds is a challenging task, for these animals comprise a group defined by habitat preference rather than taxonomic affinity. It easily includes more than half a dozen orders if it is broadly defined to include littoral as well as near-shore and pelagic birds, and transients as well as species that are resident in marine situations. This diverse group includes altricial, semi-altricial, semi-precocial, and precocial species, with all the physiological diversity that this implies. Despite these difficulties it seems worthwhile, within the framework of this symposium on the energetics of sea birds, to assemble information on embryonic responses to temperature so that we may begin to formulate meaningful questions for further investigation.


Domestic Fowl Avian Embryo Herring Gull Storm Petrel South Polar Skua 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afton, A. D., 1979, Incubation temperatures of the Northern Shoveler, Can. J. Zool., 57: 1052.CrossRefGoogle Scholar
  2. Barnes, W. S., and Hasson, S. M., 1983, Respiratory capacity of chick red and white muscle, Comp. Biochem. Physiol., 75A: 491.CrossRefGoogle Scholar
  3. Barrett, R. T., 1980, Temperature of Kittiwake Rissa tridactyla eggs and nests during incubation, Orrais Scand., 11: 50.CrossRefGoogle Scholar
  4. Bartholomew, G. A. Jr., and Dawson, W. R., 1952, Body temperatures in nestling Western Gulls, Condor, 54: 58.CrossRefGoogle Scholar
  5. Bartholomew, G. A., and Dawson, W. R., 1979, Thermoregulatory behavior during incubation in Heermann’s Gulls, Physiol. Zool. 52: 422.Google Scholar
  6. Beck, J. R., and Brown, D. W., 1972, The biology of Wilson’s Storm Petrel, Oceanites oceanicus (Kuhl), at Signy Island, South Orkney Islands, Br. Antarctic Survey Sci. Rep, 6: 911.Google Scholar
  7. Bennett, A. F., and Dawson, W. R., 1979, Physiological responses of embryonic Heermann’s Gulls to temperature, Physiol. Zool., 52: 413.Google Scholar
  8. Bennett, A. F., Dawson, W. R., and Putnam, R. W., 1981, Thermal environment and tolerance of embryonic Western Gulls, Physiol. Zool. 54: 146.Google Scholar
  9. Boersma, P. D., and Wheelwright, N. T., 1979, Egg neglect in the Procellariiformes: reproductive adaptations in the Fork-tailed Storm Petrel, Condor, 81: 57.CrossRefGoogle Scholar
  10. Boersma, P. D., Wheelwright, N. T., Nerini, M. K., and Wheelwright, E. S., 1980, The breeding biology of the Fork-tailed Storm-petrel (Oceanodroma furcata), Auk, 97: 268.Google Scholar
  11. Cesana, G., 1911–12, Interno al coefficiente termico del cuore embrionale di polio nei primi giorni dello sviluppo, Arch. Fisiol., 10:193.Google Scholar
  12. Cohn, A. E., 1928, Physiology ontogeny. A. Chicken embryos. XIII. The temperature characteristic for the contraction rate of the whole heart, J. Gen. Physiol., 11: 369.PubMedCrossRefGoogle Scholar
  13. Dawes, C. M., 1981, The effects of cooling the egg on the respiratory movements of the hatching fowl, Gallus R. domesticus), with a note on vocalization, Comp. Biochem. Physiol., 68A: 399.CrossRefGoogle Scholar
  14. Dawson, W. R., 1967, Interspecific variation in physiological responses of lizards to temperature, in: “Lizard Ecology,” W. W. Milstead, ed., University of Missouri Press, Columbia.Google Scholar
  15. Dawson, W. R., and Bennett, A. F., 1980, Metabolism and thermoregulation in hatchling Western Gulls, Condor, 82: 103.CrossRefGoogle Scholar
  16. Dawson, W. R., and Bennett, A. F., 1981, Field and laboratory studies of the thermal relations of hatchling Western Gulls, Physiol. Zool., 54: 155.Google Scholar
  17. Dawson, W. R., Bennett, A. F., and Hudson, J. W., 1976, Metabolism and thermoregulation in hatchling Ring-billed Gulls, Condor, 78: 49.CrossRefGoogle Scholar
  18. Dawson, W. R., and Hudson, J. W., 1970, Birds, in: “Comparative Physiology of Thermoregulation,” G. C. Whittow, ed., Academic Press, New York.Google Scholar
  19. Dawson, W. R., Hudson, J. W., and Hill, R. W., 1972, Temperature regulation in newly hatched Laughing Gulls (Larus atricilla), Condor, 74: 177.CrossRefGoogle Scholar
  20. Decuypere, E., Nouwen, E. J., Kühn, E. R., Geers, R., and Michels, H., 1978, Heat production and serum concentration of thyroid hormones in the chick embryo at the end of the incubation period, I.R.C.S. Med. Sci.: Dev. Biol. Med.; Endocr. Syst.; Met. Nutr.; Physiol; Rep. Obst. Gyn., 6: 336.Google Scholar
  21. Drent, R., 1967, “Functional Aspects of Incubation in the Herring Gull,” E. J. Brill, Leiden.Google Scholar
  22. Drent, R., 1970, Functional aspects of incubation in the Herring Gull, Behay. Suppl., 17: 1.Google Scholar
  23. Drent, R., 1972, Adaptive aspects of the physiology of incubation, in: “Proceedings of the XVth International Ornithological Congress,” K. H. Voous, ed., E. J. Brill, Leiden.Google Scholar
  24. Drent, R., 1973, The natural history of incubation, in: “Breeding Biology of Birds,” D. S. Farner, ed., National Academy of Sciences, Washington, D. C.Google Scholar
  25. Drent, R., 1975, Incubation, in: “Avian Biology, Vol. 5,” D. S. Farner and J. R. King, eds., Academic Press, New York.Google Scholar
  26. Freeman, B. M., 1964, The emergence of the homeothermic metabolic response in the fowl (Gallus domesticus), Comp. Biochem. Physiol., 13: 413.PubMedCrossRefGoogle Scholar
  27. Freeman, B. M., 1970, Thermoregulatory mechanisms of the neonate fowl, Comp. Biochem. Physiol., 33: 219.CrossRefGoogle Scholar
  28. Freeman, B. M., 1971, Non-shivering thermogenesis in birds, in: “Nonshivering Thermogenesis,” L. Jansky, ed., Academia, Prague.Google Scholar
  29. Freeman, B. M., 1977, Lipolysis and its significance in the response to cold of the neonatal fowl, Gallus domesticus, J. Therm. Biol., 2: 145.CrossRefGoogle Scholar
  30. Freeman, B. M., and Vince, M. A., 1974, “Development of the Avian Embryo,” Wiley and Sons, New York.Google Scholar
  31. Grant, G. S., 1982, Avian incubation, egg temperature, nest humidity and behavioral thermoregulation in a hot environment, Ornithol. Monogr., 30.Google Scholar
  32. Grieff, D., 1952, The metabolic interactions of intracellular parasites and embryonate eggs, Ann. New York Acad. Sci., 55: 254.CrossRefGoogle Scholar
  33. Hasselbalch, K. A., 1900, Ueber den respiratorischen Stoffwechsel des Huhnerembryos, Skand. Arch. Physiol., 10: 353.Google Scholar
  34. Howell, T. R., Araya, B., and Millie, W. R., 1974, Breeding biology of the Gray Gull, Larus modestus, Univ. Calif. Publ. Zool., 104: 1.Google Scholar
  35. Howell, T. R., 1979, Breeding biology of the Egyptian Plover, Pluvianus egyptius (fives: Glareolidae), Univ. Calif. Publ. Zool., 113: 1.Google Scholar
  36. Hoyt, D. F., and Rahn, H., 1980, Respiration of avian embryosa comparative analysis, Resp. Physiol., 39: 255.CrossRefGoogle Scholar
  37. Hoyt, D. F., Vleck, D., and Vleck, C. M., 1978, Metabolism of avian embryos: ontogeny and temperature effects in the Ostrich, Condor, 80: 265.CrossRefGoogle Scholar
  38. Inukai, T., 1925, Uber den Einfluss der Temperature auf die Pulsationzahl bei den Amphibienlarven and Vogelembryonen, Jap. J. Zool., 1: 67.Google Scholar
  39. Koskimies, J., and Lahti, L., 1964, Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks, Auk, 81: 281.Google Scholar
  40. Kühn, E. R., Decuypere, E., Colen, L. M., and Michels, H., 1982, Posthatch growth and development of a circadian rhythm for thyroid hormones in chicks incubated at different temperatures, Poultry Sci., 61: 540.Google Scholar
  41. Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.CrossRefGoogle Scholar
  42. Lind, H., 1961, “Studies on the Behaviour of the Black-tailed Godwit Mimosa limosa) (L.), Meddelelse fra Naturfredningsradets reservatudvalg Nr. 66, Munksgaard, Copenhagen.Google Scholar
  43. Lundy, 1969, A review of the effects of temperature, humidity„ turning and gaseous environment in the incubator on the hatchability of the hen’s egg, in: “The Fertility and Hatchability of the Hen’s Egg,” T. C. Carter and B. M. Freeman, eds., Oliver and Boyd, Edinburgh.Google Scholar
  44. Marsh, R. L., and Wickler, S. J., 1982, The role of muscle development in the transition to endothermy in nestling Bank Swallows Riparia riparia, J. Comp. Physiol., 149: 99.Google Scholar
  45. Matthews, G. V. T., 1954, Some aspects of incubation in the Manx Shearwater Procellaria puffinus, with particular reference to chilling resistance in the embryo, Ibis, 96: 432.CrossRefGoogle Scholar
  46. Mes, R., Schuckard, R., and Wattel, J., 1978, Visdieven Sterna hirundo zocken koelte, Limosa, 51: 64.Google Scholar
  47. Murrish, D. E., and Guard, C. L., 1973, Sympathetic control of nonshivering thermogenesis in South Polar Skua chicks, Antarctic J. U. S., 8: 197.Google Scholar
  48. Nair, G., and Dawes, C. M., 1980, The effects of cooling the egg on the respiratory movements of the hatching quail (Coturnix c. japonica), Comp. Biochem. Physiol., 67A: 587.CrossRefGoogle Scholar
  49. Paff, G. H., Boucek, R. J., Nieman, R. E., and Deichmann, W. B., 1963 The embryonic heart subjected to radar, Anat. Rec., 147: 379.PubMedCrossRefGoogle Scholar
  50. Palokangas, R., and Hissa, R., 1971, Thermoregulation in young Black-headed Gull (Larus ridibundus), Comp. Biochem. Physiol. 38A: 743.CrossRefGoogle Scholar
  51. Parpart, E. R., and Glaser, O., 1930, Temperature and heart rate in chick embryos, J. Exp. Biol., 7: 143.Google Scholar
  52. Patterson, I. J., 1965, Timing and spacing of broods in the Black-headed Gull Larus ridibundus, Ibis, 107: 433.CrossRefGoogle Scholar
  53. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982, Respiratory gas exchange and growth of Bonin Petrel embryos, Physiol. Zool., 55: 162.Google Scholar
  54. Purdue, J. R. 1976, Thermal environment of the nest and related parental behavior in Snowy Plovers, Charadrius alexandrinus, Condor, 78: 180.CrossRefGoogle Scholar
  55. Rahn, H., Paganelli, C. V., and Ar, A., 1974, The avian egg: air cell gas tension, metabolism and incubation time, Respir. Physiol., 22:297.Google Scholar
  56. Roberts, B., 1940, The life cycle of Wilson’s Petrel Oceanites oceanicus (Kuhl), British Graham Land Expedition: 1934–37, Sci. Rep., 1: 141.Google Scholar
  57. Romanoff, A. L., 1960, “The Avian Embryo,” Macmillan, New York.Google Scholar
  58. Romanoff, A. L., 1972, “Pathogenesis of the Avian Embryo,” Wiley-Interscience, New York.Google Scholar
  59. Romanoff, A. L., and Sochen, M., 1936, Thermal effect on the rate and duration of the embryonic heart beat of Gallus domesticus, Anat. Rec., 65: 59.CrossRefGoogle Scholar
  60. Russell, S. M., 1969, Regulation of egg temperatures by incubating White-winged Doves, in: “Physiological Systems in Semiarid Environments,” C. C. Hoff and M. L. Riedesel, eds., University of New Mexico Press, Albuquerque.Google Scholar
  61. Scholander, P. F., Flagg, W., Walters, V., and Irving, L., 1953, Climatic adaptation in arctic and tropical poikilotherms, Physiol. Zool., 26: 67.Google Scholar
  62. Skutch, A. F., 1957, The incubation period of birds, Ibis, 99: 69.CrossRefGoogle Scholar
  63. Skutch, A. F., 1962, The constancy of incubation, Wilson Bull., 74: 115.Google Scholar
  64. Vleck, C. M., Hoyt, D. F., and Vleck, D., 1979, Metabolism of avian embryos: patterns in altricial and precocial birds, Physiol. Zool., 52: 363.Google Scholar
  65. Vleck, C. M., and Kenagy, G. J., 1980, Embryonic metabolism of the Fork-tailed Storm Petrel: physiological patterns during prolonged and interrupted incubation, Physiol. Zool., 53: 32.Google Scholar
  66. Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980a, Patterns of metabolism and growth in avian embryos, Am. Zool., 20: 405.Google Scholar
  67. Vleck, D., and Vleck, C. M., and Hoyt, D. F., 1980b, Metabolism of avian embryos: ontogeny of oxygen consumption in the Rhea and Emu, Physiol. Zool, 53: 125.Google Scholar
  68. Vleck, D., Vleck, C. M., and Seymour, R. S., 1984, Energetics of embryonic development in the megapode birds, Mallee Fowl (Leipoa ocellata) and Brush Turkey (Alectura lathami), Physiol. Zool., in press.Google Scholar
  69. Walsberg, G. E., and Voss-Roberts, K. A., 1983, Incubation in desert-nesting doves: mechanisms for egg cooling, Physiol. Zool., 56: 85.Google Scholar
  70. White, F. N., and Kenney, J. L., 1974, Avian incubation, Science, 186: 107.PubMedCrossRefGoogle Scholar
  71. Wheelwright, N. T., and Boersma, P. D., 1979, Egg chilling and the thermal environment of the Fork-tailed Storm Petrel (Oceanodroma furcata) nest. Physiol. Zool., 52: 231.Google Scholar
  72. Whittow, G. C., 1984, Physiological ecology of incubation in tropical seabirds, Stud. Avian Biol., No. 8, in press.Google Scholar
  73. Wilbur, H. M., 1969, The breeding biology of Leach’s Petrel, Oceanodroma leucorhoa, Auk, 86: 433.Google Scholar
  74. Williams, J. B., and Ricklefs, R. E., 1984, Egg temperature and embryo metabolism in some high-latitude procellariiform birds, Physiol. Zool., in press.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • William R. Dawson
    • 1
  1. 1.Museum of Zoology and Division of Biological SciencesThe University of MichiganAnn ArborUSA

Personalised recommendations