Caloric Content and Energetic Budget of Tropical Seabird Eggs

  • T. N. Pettit
  • G. C. Whittow
  • G. S. Grant


Although avian egg composition and caloric density have been related to the degree of developmental maturity shown by the hatchling (Romanoff and Romanoff, 1949; Nice, 1962; Ricklefs, 1977; Carey et al., 1980), recent evidence suggests that there is no simple relationship between egg composition and hatchling precocity (Williams et al., 1982). Among tropical seabirds, incubation periods are characteristically prolonged; the incubation period is much greater than predicted on the basis of egg mass (Whittow, 1980). In addition, the energetic cost of prolonged embryonic development is high (Whittow, 1980; Ackerman et al., 1980; Pettit and Whittow, 1983). Accordingly, the energetic content of the freshly-laid egg would be expected to be high since embryonic development can utilize only those nutrients which are incorporated in the egg at the start of incubation, and the oxygen which diffuses through the pores of the eggshell, to meet metabolic requirements.


Caloric Content Caloric Density Yolk Mass Yolk Reserve French Frigate Shoal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, R. A., Whittow, G. C., Paganelli, C. V., and Pettit, T. N., 1980, Oxygen consumption, gas-exchange and growth of embryonic Wedge-tailed Shearwaters (Puffinus pacificus chlororhyncus), Physiol. Zool., 53: 210.Google Scholar
  2. Ar, A., and Rahn, H., 1980, Water in the avian egg: overall budget of incubation, Amer. Zool., 29: 373.Google Scholar
  3. Ar, A., and Tom-Tov, Y., 1978, The evolution of parental care in birds, Evolution, 32: 655.CrossRefGoogle Scholar
  4. Brody, S., 1945, “Bioenergetics and Growth”, Waverly Press, Baltimore.Google Scholar
  5. Carey, C., Rahn, H., and Parisi, P., 1980, Calories, water, lipid and yolk in avian eggs, Condor, 82:335.CrossRefGoogle Scholar
  6. Evans, R. M., 1980, Development of behavior in seabirds: an ecolo- gical perspective, in “Behavior of Marine Animals, Vol. 4: Marine Birds, J. Burger, B. L. Olla, and H. E. Winn, eds., Plenum Press, New York.Google Scholar
  7. Grant, G. S., Pettit, T. N., Rahn, H., Whittow, G. C., and Paganelli, C. V., 1982a, Water loss from Laysan and Black-footed Albatross eggs, Physiol. Zool., 55: 405.Google Scholar
  8. Grant, G. S., Pettit, T. N., Rahn, H., Whittow, G. C., and Paganelli, C. V., 1982b, Regulation of water loss from Bonin petrel (Pterodroma hypoleuca) eggs, Auk, 99: 236.Google Scholar
  9. Hazelwood, R. L., 1965, Carbohydrate metabolism, in “Avian Physiology”, P. D. Sturkie, ed., Cornell Univ. Press, Ithaca.Google Scholar
  10. Montevecchi, W. A., Kirkham, I. R., Roby, D. D., and Brink, K. L., 1983, Size, organic composition, and energy content of Leach’s storm-petrel (Oceanodroma leucorhoa) eggs with reference to position in the precocial-altricial spectrum and breeding ecology, Can. J. Zool., 61: 1457.CrossRefGoogle Scholar
  11. Murray, H. A, 1925, Chemical changes in fertile eggs during incubation, J. Gen. Physiol., 9: 1.PubMedCrossRefGoogle Scholar
  12. Needham, J., 1931, “Chemical embryology”, Vol. 2, Cambridge Univ. Press, Cambridge.Google Scholar
  13. Nice, M. M., 1962, Development of behavior in precocial birds, Trans. Linn. Soc. N.Y., 8: 1.Google Scholar
  14. Pandian, T. J., 1969, Yolk utilization in the gastropod Crepidula fornicata, Marine Biol., 8: 117.CrossRefGoogle Scholar
  15. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1981, Respiratory gas exchange and growth of White Tern embryos, Condor, 83: 355.CrossRefGoogle Scholar
  16. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982a, Embryonic oxygen consumption and growth of Laysan and black-footed albatross, Am. J. Physiol., 242: R121.PubMedGoogle Scholar
  17. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982b, Respiratory gas exchange and growth of Bonin petrel embryos, Physiol. Zool., 55: 162.Google Scholar
  18. Pettit, T.N., and Whittow, G. C., 1983, Embryonic respiration andgrowth in two species of noddy terns, Physiol. Zool., 56:455.Google Scholar
  19. Ricklefs, R. E., White, S., and Cullen, J., 1980, Postnatal development of Leach’s Storm Petrel, Auk, 97: 768.Google Scholar
  20. Ricklefs, R. E., 1974, Energetics of reproduction in birds, in “Avian Energetics”, R. A. Paynter, Jr., ed., Publ. Nutall. Ornithol. Club No. 15.Google Scholar
  21. Ricklefs, R. E., 1977, Composition of eggs of several bird species, Auk, 94: 350.Google Scholar
  22. Ricklefs, R. E., and Cullen, J., 1973, Embryonic growth of the Green Iguana, Iguana iguana, Copeia, 2: 296.CrossRefGoogle Scholar
  23. Ricklefs, R. E., and Montevecci, W. A., 1979, Size, organic composition and energy content of North Atlantic Gannet Morus bassanus eggs, Comp. Biochem. Physiol., 64A: 161.CrossRefGoogle Scholar
  24. Romanoff, A. L., 1944, Avian space yolk and its assimilation, Auk, 61: 235.Google Scholar
  25. Romanoff, A. L., and Romanoff, A. J., 1949, “The avian egg”, Wiley, New York.Google Scholar
  26. Romanoff, A. L., 1967, “Biochemistry of the Avian Embryo”, Wiley, New York.Google Scholar
  27. Schmidt-Nielsen, K., 1975, Animal Physiology, Cambridge Univ. Press, New York.Google Scholar
  28. Vanheel, B., Vandeputte-Poma, J., and Desmeth, M., 1981, Resorption of yolk lipids by the pigeon embryo, Comp. Biochem. Physiol., 68: 641.CrossRefGoogle Scholar
  29. Vitt, S., 1974, Reproductive effort and energy comparisons of adults, eggs and neonates of Gerrhonotus coeruleus principis, J. Herpetol, 8: 165.CrossRefGoogle Scholar
  30. Vleck, C., and Kenagy, G. J., 1980, Embryonic metabolism of the Fork-tailed Storm-Petrel: physiological patterns during prolonged and interrupted incubation, Physiol. Zool., 53: 32.Google Scholar
  31. Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980, Patterns of metabolism and growth in avian embryos, Amer. Zool., 20: 405.Google Scholar
  32. Warham, J., 1983, The composition of petrel eggs, Condor, 85: 194.CrossRefGoogle Scholar
  33. Whittow, G. C., 1980, Physiological and ecological correlates of prolonged incubation in seabirds, Amer. Zool., 20: 427.Google Scholar
  34. Whittow, G. C., Ackerman, R. A., Paganelli, C. V., and Pettit, T. N., 1982, Pre-pipping water loss from the eggs of the Wedge-tailed Shearwater, Comp. Biochem. Physiol., 72: 29.CrossRefGoogle Scholar
  35. Williams, A. J., Siegfried, W. R., and Cooper, J., 1982, Egg composition and hatchling precocity in seabirds, Ibis, 124: 456.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • T. N. Pettit
    • 1
  • G. C. Whittow
    • 1
  • G. S. Grant
    • 2
  1. 1.Department of Physiology, John A. Burns School of Medicine and P.B.R.C. Kewalo Marine LaboratoryUniversity of HawaiiHonoluluUSA
  2. 2.North Carolina State Museum of Natural HistoryRaleighUSA

Personalised recommendations