• H. Rahn
  • G. C. Whittow


The productivity of the oceans ultimately determines the numbers of seabirds, and regional variations in the abundance of food have a profound effect on their distribution. It has been argued that food is the resource that is most commonly limited in supply, as far as seabirds are concerned (Evans, 1980), and restricted food niches may be partly responsible for the relatively small number of species of seabirds. Thus, out of a total of 8,600 species of birds, approximately 285 may be classified as seabirds. They belong to fifteen families representing four orders (Fig. 1). The exact number of species depends on the definition of a seabird on the one hand, and a species or race on the other. It is apparent from Fig. 2 that approximately 97% of all species of birds are confined to one third of the world’s surface, while only 3% utilize the remaining surface, the oceans. This distribution suggests a general scarcity of available food for seabirds, and indeed vast central areas of the oceans are relatively unproductive, particularly in the tropics and subtropics. In general, the areas of highest productivity are the seas overlying the continental shelves, and in the best areas, the sea can grow as much food as the most fertile land.


Basal Metabolic Rate Emperor Penguin Marine Bird Herring Gull Seabird Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, R. A., Whittow, G. C., Paganelli, C. V., and Pettit, T. N., 1980, Oxygen consumption, gas exchange, and growth of embryonic Wedge-tailed Shearwaters (Puffinus pacificus chlororhynchus), Physiol. Zool., 53: 210.Google Scholar
  2. Adams, N. J., and Brown, C. R., 1983, Metabolic rates of sub-antarctic Procellariiformes: a comparative study, Comp. Biochem. Physiol., in the press.Google Scholar
  3. Ashmole, N. P., 1971, Seabird ecology and the marine environment, in: “Avian Biology”, Volume 1, D. S. Farner, J. R. King, and K. C. Parkes, eds., Academic Press, New York.Google Scholar
  4. Ashmole, N. P., and Ashmole, M. J., 1967, Comparative Feeding Ecology of Seabirds of a Tropical Oceanic Island, Peabody Museum of Natural History, Yale University, Bull. 24.Google Scholar
  5. Baudinette, R. V., and Schmidt-Nielsen, K., 1974, Energy cost of gliding flight in Herring Gulls, Nature, 248: 83.CrossRefGoogle Scholar
  6. Benedict, F. G., and Fox, E. L., 1927, The gaseous metabolism of large wild birds under aviary life, Proc. Amer. Philos. Soc., 66: 511.Google Scholar
  7. Bengtson, J. L., 1978, Review of information regarding the conservation of living resources of the Antarctic marine ecosystem, Marine Mammal Commission, Nat. Tech. Inform. Service PB-289496, U. S. Dept. Commerce, Washington, D. C.Google Scholar
  8. Boddington, M. J., 1978, An absolute metabolic scope for activity, J. Theor. Biol., 75: 443.CrossRefPubMedGoogle Scholar
  9. Buckley, F. G., and Buckley, P. A., 1980, Habitat selection and marine birds, in: “Behavior of marine animals, Vol. 4: Marine Birds”, J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.Google Scholar
  10. Carey, C., Rahn, H., and Parisi, P., 1980, Calories, water, lipid and yolk in avian eggs, Condor, 82: 335.CrossRefGoogle Scholar
  11. Clarke, A., and Prince, P. A., 1976, The origin of stomach oil in marine birds: analysis of the stomach oil from six species of subantarctic procellariiform birds, J. exp. mar. Biol. Ecol., 23: 15.CrossRefGoogle Scholar
  12. Croxall, J. P., and Prince, P. A., 1981, A preliminary assessment of the impact of sea birds on marine resources at South Georgia, Colloque sur les Ecosystemes Subantarctiques. Palmpont, C.N.F.R.A., 011a, No. 51, 501.Google Scholar
  13. Croxall, J. P., and Prince, P. A., 1980, Food, feeding ecology and ecological segregation of seabirds at South Georgia, Biol. J. Linn. Soc., 14: 103.CrossRefGoogle Scholar
  14. Cushing, D. H., 1982, “Climate and Fisheries”, Academic Press, London.Google Scholar
  15. Dawson, W. R., and Bennett, A. F., 1981, Field and laboratory studies of the thermal relations of hatchling Western Gulls, Physiol. Zool., 54: 155.Google Scholar
  16. Dawson, W. R., and Hudson, J. W., 1970, Birds, in: “Comparative physiology of thermoregulation”, G. C. Whittow, ed., Academic Press, New York.Google Scholar
  17. Dawson, W. R., Hudson, J. W., and Hill, R. W., 1972, Temperature regulation in newly hatched Laughing Gulls (Larus atricilla), Condor, 74: 177.CrossRefGoogle Scholar
  18. Diamond, A. W., 1978, Feeding strategies and population size in tropical seabirds, Amer. Nat., 112: 215.CrossRefGoogle Scholar
  19. Drent, R. H., 1970, Functional aspects of incubation in the Herring Gull, in: “The Herring Gull and its egg”, G. P. Baerends, and R. H. Drent, eds., Brill, Leiden.Google Scholar
  20. Drent, R. J., and Stonehouse, B., 1971, Thermoregulatory responses of the Peruvian Penguin, Spheniscus humboldti, Comp. Biochem. Physiol., 40A: 689.CrossRefGoogle Scholar
  21. Dunn, E. H., 1976, The development of endothermy and existence energy expenditure in Herring Gull chicks, Condor, 78: 493.CrossRefGoogle Scholar
  22. Dunn, E. H., 1979, Time-energy use and life history. Strategies of northern seabirds, in: “Conservation of Marine Birds in Northern North America,” J. C. Bartonek, and D. N. Nettleship, eds., U. S. Fish and Wildlife Service, Wildl. Res. Rept., No. 11.Google Scholar
  23. Ellis, H. I., Maskrey, M., Pettit, T. N., and Whittow, G. C., 1982a, Temperature regulation in Hawaiian Brown Noddies (Anous stolidus pileatus), Physiologist, 25: 279.Google Scholar
  24. Ellis, H. I., Maskrey, M., Pettit, T. N., and Whittow, G. C., 1982b, Temperature regulation in Hawaiian Red-footed Boobies, Amer. Zool., 22: 394.Google Scholar
  25. Enger, P. S., 1957, Heat regulation and metabolism in some tropical mammals and birds, Acta Physiol. Scand., 40: 161.CrossRefPubMedGoogle Scholar
  26. Evans, R. M., 1980, Development of behavior in seabirds: an ecological perspective, in: “Behavior of marine animals, Vol. 4: marine birds”, J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.Google Scholar
  27. Grant, G. S., and Whittow, G. C., 1983, Metabolic cost of incubation in the Laysan Albatross and Bonin Petrel, Comp. Biochem. Physiol., 74A: 77.CrossRefGoogle Scholar
  28. Grant, G. S., Pettit, T. N., Rahn, H., Whittow, G. C., and Paganelli, C. V., 1982, Water loss from Laysan and Black-footed Albatross eggs, Physiol. Zool., 55: 405.Google Scholar
  29. Harrison, C. S., Hida, T. S., and Seki, M. P., 1983, Hawaiian seabird feeding ecology, Wildlife Monographs, No. 85.Google Scholar
  30. Harrison, C. S., Naughton, M. B., and Fefer, S. I., 1984, The status and conservation of seabirds in the Hawaiian Archipelago and Johnston Atoll. ICBP Technical Bulletin. In the press.Google Scholar
  31. Heinroth, O., 1922, Die beziehungen zwischen vogelfewicht, eigewicht, gelegegewicht und brutdauer, J. Ornithol., 70: 172.CrossRefGoogle Scholar
  32. Hoyt, D., and Rahn, H., 1980, Respiration of avian embryos - a comparative analysis, Resp. Physiol., 39: 255.CrossRefGoogle Scholar
  33. Hunt, G. L., Burgeson, B., and Sanger, G. A., 1981, Feeding ecology of seabirds of the Eastern Bering Sea, in: “The Eastern Bering Sea Shelf,” D. W. Hood and J. A. Calder, eds., Oceanography and Resources, Vol. 2, NOAA.Google Scholar
  34. Hutchinson, G. E., 1950, Survey of Contemporary Knowledge of Bio-geochemistry. 3. The Biogeochemistry of Vertebrate Excretion, Bull. Amer. Mus. Nat. Hist., 96: 1.Google Scholar
  35. Iverson, J. A., and Krog, J., 1972, Body temperatures and resting metabolic rates in ‘small petrels, Norw. J. Zool., 20: 141.Google Scholar
  36. Johnson, S. R., and West, G. C., 1975, Growth and development of heat regulation in nestlings, and metabolism of adult Common and Thick-billed Murres, Ornis. Scand., 6: 109.CrossRefGoogle Scholar
  37. Jordan, R., 1967, The predation of guano birds on the Peruvian anchovy (Engraulin ringens Jenyns), Calcofi. Rep., 11: 105.Google Scholar
  38. Jordan, R., 1976, Biologia de la anchoveta. Parte I. Resumen del Conocimiento actual. Actas de la Reunion de Trabajo Sobre el Fenomeno Conocido como El Nino, FAO informes de Pesca, 185: 359.Google Scholar
  39. Jordan, R., and Fuentes, H., 1966, La poblaciones de ayes guarneras y su situacion actual, Informe del Inst. del Mar del Peru, 10: 30 pp.Google Scholar
  40. Kendeigh, S. C., Kanwisher, J. W., and Ridgway, S. H., 1983, The physiological ecology of whales and porpoises, Sci. Amer., 248: 111.Google Scholar
  41. Kendeigh, S. C., Dol’nik, V. R., and Gavrilov, V. M., 1977, Avian energetics, in: “Granivorous Birds in Ecosystems”, J. Pinowski and S. C. Kendeigh, eds., International Biological Programme, Vol. 12, Cambridge Univ. Press, London.Google Scholar
  42. Kooyman, G. L., Gentry, R. L., Bergman, W. P., and Hammel, H. T., 1976, Heat loss in penguins during immersion and compression, Comp. Biochem. Physiol., 54A: 75.CrossRefGoogle Scholar
  43. Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.CrossRefGoogle Scholar
  44. LeMaho, Y., Delclitte, P., and Chatonnet, J., 1976, Thermoregulation in fasting Emperor Penguins under natural conditions, Am. J. Physiol., 231: 913.Google Scholar
  45. Linstedt, S. L., and Calder, W. A., 1976, Body size and longevity in birds, Condor, 78: 91.CrossRefGoogle Scholar
  46. MacMillen, R. E., Whittow, G. C., Christopher, E. A., and Ebisu, R. J., 1977, Oxygen consumption, evaporative water loss and body temperature in the Sooty Tern, Auk, 94: 72.Google Scholar
  47. Montevecchi, W. A., and Porter, J. M., 1980, Parental investments by seabirds at breeding area with emphasis on Northern Gannets, Morus bassanus, in: Behavior of marine animals, Volume 4: marine birds“ J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.Google Scholar
  48. Nelson, J. B., 1971, The biology of Abbott’s Booby Sula abbotti, Ibis, 113: 429.CrossRefGoogle Scholar
  49. Nelson, J. B., 1978, The Sulidae, Oxford Univ. Press, Oxford.Google Scholar
  50. Nelson, J. B., 1979, “Seabirds: their biology and ecology”, A & W Publishers Inc., New York.Google Scholar
  51. Pettit, T. N., and Whittow, G. C., 1983, Embryonic respiration and growth in two species of noddy terns, Physiol. Zool., in the press.Google Scholar
  52. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1981, Respiratory gas exchange and growth of White Tern embryos, Condor, 83: 355.CrossRefGoogle Scholar
  53. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982a, Embryonic oxygen consumption and growth of Laysan and Black-footed albatross, Am. J. Physiol., 242: R121.PubMedGoogle Scholar
  54. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982b, Respiratory gas exchange and growth of Bonin Petrel embryos, Physiol. Zool., 55: 162.Google Scholar
  55. Pinshow, B., Fedak, M. A., Battles, D. R., and Schmidt-Nielsen, K., 1976, Energy expenditure for thermoregulation and locomotion in Emperor Penguins, Am. J. Physiol., 231: 903.PubMedGoogle Scholar
  56. Rahn, H., 1982, Comparison of embryonic development in birds and mammals: birth weight, tissue and cost, in: “A comparison to animal physiology”, C. R. Taylor, K. Johansen, and L. Bolis, eds., Cambridge Univ. Press, Cambridge.Google Scholar
  57. Rahn, H., and Ar, A., 1974, The avian egg: incubation time and water loss, Condor, 76: 147.CrossRefGoogle Scholar
  58. Rahn, H., and Ar, A., 1980, Gas exchange of the avian egg: time, structure and function, Amer. Zool., 20: 477.Google Scholar
  59. Ricklefs, R. E., 1974, Energetics of reproduction in birds, in: “Avian Energetics”, ed. R. A. Paynter, Publications of the Nuttall Ornithological Club, No. 15, Cambridge.Google Scholar
  60. Ricklefs, R. E., 1977, Composition of eggs of several bird species, Auk, 94: 350.Google Scholar
  61. Ricklefs, R. E., and White, S. C., 1981, Growth and energetics of chicks of the Sooty Tern (Sterna fuscata) and Common Tern (S. hirundo), Auk, 98: 361.Google Scholar
  62. Ricklefs, R. E., White, S. C., and Cullen, J., 1981, Energetics of postnatal growth in Leach’s Storm-Petrel, Auk, 97: 566.Google Scholar
  63. Rubner, M., 1908, “Das problem der lebensdauer und seine beziehungen zu wachstum und ernahrung”, Oldenburg, Munich.Google Scholar
  64. Schmidt-Nielsen, K., 1975, “Animal Physiology: adaptation and environment”, Cambridge Univ. Press, London.Google Scholar
  65. Scholander, P. F., Hock, R., Walters, V., and Irving, L., 1950, Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation and basal metabolic rate, Biol. Bull., 99: 259.CrossRefPubMedGoogle Scholar
  66. Schreiber, R. W., and Ashmole, N. P., 1970, Seabird breeding seasons on Christmas Island, Pacific Ocean, Ibis 112: 363.CrossRefGoogle Scholar
  67. Schönwetter, A., 1960, Handbuch der oologie, Lief. 1., ed. W. Meise, Akademie Verlag, Berlin.Google Scholar
  68. Schreiber, R. W., and Schreiber, E. A., 1983, Reproductive failure of marine birds on Christmas Island, Fall 1982, Trop. Ocean. Atmos. Newsletter, February, 10.Google Scholar
  69. Simons, T. R., 1983, The breeding biology and conservation of the endangered Dark-rumped Petrel (Pterodroma phaeopygia) in the Hawaiian Islands, Ph.D. Thesis, University of Washington.Google Scholar
  70. Sowls, A. L., Hatch, S. A., and Lensink, C. J., 1978, Catalog of Alaskan seabird colonies, U. S. Dept. of the Interior, Fish and Wildlife Service, FSW/OBS-78/78.Google Scholar
  71. Sowls, A. L., DeGrange, A. R., Nelson, J. W., and Lester, G. S., 1980, Catalog of California Seabird Colonies, U. S. Dept. Interior, Fish and Wildl. Serv., Biol. Services Program FWS/ OBS, 37/80.Google Scholar
  72. Stahel, C. D., and Nicol, S. C., 1982, Temperature regulation in the Little Penguin, Eudyptula minor, in air and water, J. Comp. Physiol., B, 148: 93.Google Scholar
  73. Tucker, V. A., 1972, Metabolism during flight in the Laughing Gull, Larus atricilla, Am. J. Physiol., 222: 237.PubMedGoogle Scholar
  74. Vleck, C. M., and Kenagy, G. J., 1980, Embryonic metabolism of the Fork-tailed Storm Petrel: physiological patterns during prolonged and interrupted incubation, Physiol. Zool., 53: 32.Google Scholar
  75. Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980, Patterns of meta- bolism and growth in avian embryos, Amer. Zool., 20: 405.Google Scholar
  76. Warham, J., 1983, The composition of petrel eggs, Condor, 85: 194.CrossRefGoogle Scholar
  77. Warham, J., Watts, R., and Dainty, R. J., 1976, The composition, energy content and function of the stomach oils of petrels (order Procellariiformes), J. exp. Mar. Biol. Ecol., 23: 1.CrossRefGoogle Scholar
  78. Whittow, G. C., 1980, Physiological and ecological correlates of prolonged incubation in seabirds, Amer. Zool., 20: 427.Google Scholar
  79. Whittow, G. C., 1983, Physiological ecology of incubation in tropical seabirds, Studies in Avian Biol., in the press.Google Scholar
  80. Whittow, G. C., 1984a, Regulation of body temperature, in: “Avian Physiology”, 4th ed., P. D. Sturkie, ed., Springer-Verlag, New York.Google Scholar
  81. Whittow, G. C., 1984b, Energy metabolism, in: “Avian Physiology”, th ed., P. D. Sturkie, ed., Springer-Verlag, New York.Google Scholar
  82. Williams, A. J., Siegfried, W. R., and Cooper, J., 1982, Egg composition and hatchling precocity in seabirds, Ibis, 124: 456.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. Rahn
    • 1
  • G. C. Whittow
    • 2
  1. 1.Department of Physiology, Schools of Medicine and DentistryState University of New YorkBuffaloUSA
  2. 2.Department of Physiology, John A. Burns School of Medicine and P.B.R.C. Kewalo Marine LaboratoryUniversity of HawaiiHonoluluUSA

Personalised recommendations