Skip to main content

Introduction

  • Chapter
Seabird Energetics

Abstract

The productivity of the oceans ultimately determines the numbers of seabirds, and regional variations in the abundance of food have a profound effect on their distribution. It has been argued that food is the resource that is most commonly limited in supply, as far as seabirds are concerned (Evans, 1980), and restricted food niches may be partly responsible for the relatively small number of species of seabirds. Thus, out of a total of 8,600 species of birds, approximately 285 may be classified as seabirds. They belong to fifteen families representing four orders (Fig. 1). The exact number of species depends on the definition of a seabird on the one hand, and a species or race on the other. It is apparent from Fig. 2 that approximately 97% of all species of birds are confined to one third of the world’s surface, while only 3% utilize the remaining surface, the oceans. This distribution suggests a general scarcity of available food for seabirds, and indeed vast central areas of the oceans are relatively unproductive, particularly in the tropics and subtropics. In general, the areas of highest productivity are the seas overlying the continental shelves, and in the best areas, the sea can grow as much food as the most fertile land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, R. A., Whittow, G. C., Paganelli, C. V., and Pettit, T. N., 1980, Oxygen consumption, gas exchange, and growth of embryonic Wedge-tailed Shearwaters (Puffinus pacificus chlororhynchus), Physiol. Zool., 53: 210.

    Google Scholar 

  • Adams, N. J., and Brown, C. R., 1983, Metabolic rates of sub-antarctic Procellariiformes: a comparative study, Comp. Biochem. Physiol., in the press.

    Google Scholar 

  • Ashmole, N. P., 1971, Seabird ecology and the marine environment, in: “Avian Biology”, Volume 1, D. S. Farner, J. R. King, and K. C. Parkes, eds., Academic Press, New York.

    Google Scholar 

  • Ashmole, N. P., and Ashmole, M. J., 1967, Comparative Feeding Ecology of Seabirds of a Tropical Oceanic Island, Peabody Museum of Natural History, Yale University, Bull. 24.

    Google Scholar 

  • Baudinette, R. V., and Schmidt-Nielsen, K., 1974, Energy cost of gliding flight in Herring Gulls, Nature, 248: 83.

    Article  Google Scholar 

  • Benedict, F. G., and Fox, E. L., 1927, The gaseous metabolism of large wild birds under aviary life, Proc. Amer. Philos. Soc., 66: 511.

    CAS  Google Scholar 

  • Bengtson, J. L., 1978, Review of information regarding the conservation of living resources of the Antarctic marine ecosystem, Marine Mammal Commission, Nat. Tech. Inform. Service PB-289496, U. S. Dept. Commerce, Washington, D. C.

    Google Scholar 

  • Boddington, M. J., 1978, An absolute metabolic scope for activity, J. Theor. Biol., 75: 443.

    Article  CAS  PubMed  Google Scholar 

  • Buckley, F. G., and Buckley, P. A., 1980, Habitat selection and marine birds, in: “Behavior of marine animals, Vol. 4: Marine Birds”, J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.

    Google Scholar 

  • Carey, C., Rahn, H., and Parisi, P., 1980, Calories, water, lipid and yolk in avian eggs, Condor, 82: 335.

    Article  Google Scholar 

  • Clarke, A., and Prince, P. A., 1976, The origin of stomach oil in marine birds: analysis of the stomach oil from six species of subantarctic procellariiform birds, J. exp. mar. Biol. Ecol., 23: 15.

    Article  CAS  Google Scholar 

  • Croxall, J. P., and Prince, P. A., 1981, A preliminary assessment of the impact of sea birds on marine resources at South Georgia, Colloque sur les Ecosystemes Subantarctiques. Palmpont, C.N.F.R.A., 011a, No. 51, 501.

    Google Scholar 

  • Croxall, J. P., and Prince, P. A., 1980, Food, feeding ecology and ecological segregation of seabirds at South Georgia, Biol. J. Linn. Soc., 14: 103.

    Article  Google Scholar 

  • Cushing, D. H., 1982, “Climate and Fisheries”, Academic Press, London.

    Google Scholar 

  • Dawson, W. R., and Bennett, A. F., 1981, Field and laboratory studies of the thermal relations of hatchling Western Gulls, Physiol. Zool., 54: 155.

    Google Scholar 

  • Dawson, W. R., and Hudson, J. W., 1970, Birds, in: “Comparative physiology of thermoregulation”, G. C. Whittow, ed., Academic Press, New York.

    Google Scholar 

  • Dawson, W. R., Hudson, J. W., and Hill, R. W., 1972, Temperature regulation in newly hatched Laughing Gulls (Larus atricilla), Condor, 74: 177.

    Article  Google Scholar 

  • Diamond, A. W., 1978, Feeding strategies and population size in tropical seabirds, Amer. Nat., 112: 215.

    Article  Google Scholar 

  • Drent, R. H., 1970, Functional aspects of incubation in the Herring Gull, in: “The Herring Gull and its egg”, G. P. Baerends, and R. H. Drent, eds., Brill, Leiden.

    Google Scholar 

  • Drent, R. J., and Stonehouse, B., 1971, Thermoregulatory responses of the Peruvian Penguin, Spheniscus humboldti, Comp. Biochem. Physiol., 40A: 689.

    Article  CAS  Google Scholar 

  • Dunn, E. H., 1976, The development of endothermy and existence energy expenditure in Herring Gull chicks, Condor, 78: 493.

    Article  Google Scholar 

  • Dunn, E. H., 1979, Time-energy use and life history. Strategies of northern seabirds, in: “Conservation of Marine Birds in Northern North America,” J. C. Bartonek, and D. N. Nettleship, eds., U. S. Fish and Wildlife Service, Wildl. Res. Rept., No. 11.

    Google Scholar 

  • Ellis, H. I., Maskrey, M., Pettit, T. N., and Whittow, G. C., 1982a, Temperature regulation in Hawaiian Brown Noddies (Anous stolidus pileatus), Physiologist, 25: 279.

    Google Scholar 

  • Ellis, H. I., Maskrey, M., Pettit, T. N., and Whittow, G. C., 1982b, Temperature regulation in Hawaiian Red-footed Boobies, Amer. Zool., 22: 394.

    Google Scholar 

  • Enger, P. S., 1957, Heat regulation and metabolism in some tropical mammals and birds, Acta Physiol. Scand., 40: 161.

    Article  CAS  PubMed  Google Scholar 

  • Evans, R. M., 1980, Development of behavior in seabirds: an ecological perspective, in: “Behavior of marine animals, Vol. 4: marine birds”, J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.

    Google Scholar 

  • Grant, G. S., and Whittow, G. C., 1983, Metabolic cost of incubation in the Laysan Albatross and Bonin Petrel, Comp. Biochem. Physiol., 74A: 77.

    Article  CAS  Google Scholar 

  • Grant, G. S., Pettit, T. N., Rahn, H., Whittow, G. C., and Paganelli, C. V., 1982, Water loss from Laysan and Black-footed Albatross eggs, Physiol. Zool., 55: 405.

    Google Scholar 

  • Harrison, C. S., Hida, T. S., and Seki, M. P., 1983, Hawaiian seabird feeding ecology, Wildlife Monographs, No. 85.

    Google Scholar 

  • Harrison, C. S., Naughton, M. B., and Fefer, S. I., 1984, The status and conservation of seabirds in the Hawaiian Archipelago and Johnston Atoll. ICBP Technical Bulletin. In the press.

    Google Scholar 

  • Heinroth, O., 1922, Die beziehungen zwischen vogelfewicht, eigewicht, gelegegewicht und brutdauer, J. Ornithol., 70: 172.

    Article  Google Scholar 

  • Hoyt, D., and Rahn, H., 1980, Respiration of avian embryos - a comparative analysis, Resp. Physiol., 39: 255.

    Article  CAS  Google Scholar 

  • Hunt, G. L., Burgeson, B., and Sanger, G. A., 1981, Feeding ecology of seabirds of the Eastern Bering Sea, in: “The Eastern Bering Sea Shelf,” D. W. Hood and J. A. Calder, eds., Oceanography and Resources, Vol. 2, NOAA.

    Google Scholar 

  • Hutchinson, G. E., 1950, Survey of Contemporary Knowledge of Bio-geochemistry. 3. The Biogeochemistry of Vertebrate Excretion, Bull. Amer. Mus. Nat. Hist., 96: 1.

    Google Scholar 

  • Iverson, J. A., and Krog, J., 1972, Body temperatures and resting metabolic rates in ‘small petrels, Norw. J. Zool., 20: 141.

    Google Scholar 

  • Johnson, S. R., and West, G. C., 1975, Growth and development of heat regulation in nestlings, and metabolism of adult Common and Thick-billed Murres, Ornis. Scand., 6: 109.

    Article  Google Scholar 

  • Jordan, R., 1967, The predation of guano birds on the Peruvian anchovy (Engraulin ringens Jenyns), Calcofi. Rep., 11: 105.

    Google Scholar 

  • Jordan, R., 1976, Biologia de la anchoveta. Parte I. Resumen del Conocimiento actual. Actas de la Reunion de Trabajo Sobre el Fenomeno Conocido como El Nino, FAO informes de Pesca, 185: 359.

    Google Scholar 

  • Jordan, R., and Fuentes, H., 1966, La poblaciones de ayes guarneras y su situacion actual, Informe del Inst. del Mar del Peru, 10: 30 pp.

    Google Scholar 

  • Kendeigh, S. C., Kanwisher, J. W., and Ridgway, S. H., 1983, The physiological ecology of whales and porpoises, Sci. Amer., 248: 111.

    Google Scholar 

  • Kendeigh, S. C., Dol’nik, V. R., and Gavrilov, V. M., 1977, Avian energetics, in: “Granivorous Birds in Ecosystems”, J. Pinowski and S. C. Kendeigh, eds., International Biological Programme, Vol. 12, Cambridge Univ. Press, London.

    Google Scholar 

  • Kooyman, G. L., Gentry, R. L., Bergman, W. P., and Hammel, H. T., 1976, Heat loss in penguins during immersion and compression, Comp. Biochem. Physiol., 54A: 75.

    Article  CAS  Google Scholar 

  • Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.

    Article  Google Scholar 

  • LeMaho, Y., Delclitte, P., and Chatonnet, J., 1976, Thermoregulation in fasting Emperor Penguins under natural conditions, Am. J. Physiol., 231: 913.

    CAS  Google Scholar 

  • Linstedt, S. L., and Calder, W. A., 1976, Body size and longevity in birds, Condor, 78: 91.

    Article  Google Scholar 

  • MacMillen, R. E., Whittow, G. C., Christopher, E. A., and Ebisu, R. J., 1977, Oxygen consumption, evaporative water loss and body temperature in the Sooty Tern, Auk, 94: 72.

    Google Scholar 

  • Montevecchi, W. A., and Porter, J. M., 1980, Parental investments by seabirds at breeding area with emphasis on Northern Gannets, Morus bassanus, in: Behavior of marine animals, Volume 4: marine birds“ J. Burger, B. L. 011a, and H. E. Winn, eds., Plenum Press, New York.

    Google Scholar 

  • Nelson, J. B., 1971, The biology of Abbott’s Booby Sula abbotti, Ibis, 113: 429.

    Article  Google Scholar 

  • Nelson, J. B., 1978, The Sulidae, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Nelson, J. B., 1979, “Seabirds: their biology and ecology”, A & W Publishers Inc., New York.

    Google Scholar 

  • Pettit, T. N., and Whittow, G. C., 1983, Embryonic respiration and growth in two species of noddy terns, Physiol. Zool., in the press.

    Google Scholar 

  • Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1981, Respiratory gas exchange and growth of White Tern embryos, Condor, 83: 355.

    Article  Google Scholar 

  • Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982a, Embryonic oxygen consumption and growth of Laysan and Black-footed albatross, Am. J. Physiol., 242: R121.

    CAS  PubMed  Google Scholar 

  • Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., and Paganelli, C. V., 1982b, Respiratory gas exchange and growth of Bonin Petrel embryos, Physiol. Zool., 55: 162.

    Google Scholar 

  • Pinshow, B., Fedak, M. A., Battles, D. R., and Schmidt-Nielsen, K., 1976, Energy expenditure for thermoregulation and locomotion in Emperor Penguins, Am. J. Physiol., 231: 903.

    CAS  PubMed  Google Scholar 

  • Rahn, H., 1982, Comparison of embryonic development in birds and mammals: birth weight, tissue and cost, in: “A comparison to animal physiology”, C. R. Taylor, K. Johansen, and L. Bolis, eds., Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Rahn, H., and Ar, A., 1974, The avian egg: incubation time and water loss, Condor, 76: 147.

    Article  Google Scholar 

  • Rahn, H., and Ar, A., 1980, Gas exchange of the avian egg: time, structure and function, Amer. Zool., 20: 477.

    Google Scholar 

  • Ricklefs, R. E., 1974, Energetics of reproduction in birds, in: “Avian Energetics”, ed. R. A. Paynter, Publications of the Nuttall Ornithological Club, No. 15, Cambridge.

    Google Scholar 

  • Ricklefs, R. E., 1977, Composition of eggs of several bird species, Auk, 94: 350.

    Google Scholar 

  • Ricklefs, R. E., and White, S. C., 1981, Growth and energetics of chicks of the Sooty Tern (Sterna fuscata) and Common Tern (S. hirundo), Auk, 98: 361.

    Google Scholar 

  • Ricklefs, R. E., White, S. C., and Cullen, J., 1981, Energetics of postnatal growth in Leach’s Storm-Petrel, Auk, 97: 566.

    Google Scholar 

  • Rubner, M., 1908, “Das problem der lebensdauer und seine beziehungen zu wachstum und ernahrung”, Oldenburg, Munich.

    Google Scholar 

  • Schmidt-Nielsen, K., 1975, “Animal Physiology: adaptation and environment”, Cambridge Univ. Press, London.

    Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., and Irving, L., 1950, Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation and basal metabolic rate, Biol. Bull., 99: 259.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, R. W., and Ashmole, N. P., 1970, Seabird breeding seasons on Christmas Island, Pacific Ocean, Ibis 112: 363.

    Article  Google Scholar 

  • Schönwetter, A., 1960, Handbuch der oologie, Lief. 1., ed. W. Meise, Akademie Verlag, Berlin.

    Google Scholar 

  • Schreiber, R. W., and Schreiber, E. A., 1983, Reproductive failure of marine birds on Christmas Island, Fall 1982, Trop. Ocean. Atmos. Newsletter, February, 10.

    Google Scholar 

  • Simons, T. R., 1983, The breeding biology and conservation of the endangered Dark-rumped Petrel (Pterodroma phaeopygia) in the Hawaiian Islands, Ph.D. Thesis, University of Washington.

    Google Scholar 

  • Sowls, A. L., Hatch, S. A., and Lensink, C. J., 1978, Catalog of Alaskan seabird colonies, U. S. Dept. of the Interior, Fish and Wildlife Service, FSW/OBS-78/78.

    Google Scholar 

  • Sowls, A. L., DeGrange, A. R., Nelson, J. W., and Lester, G. S., 1980, Catalog of California Seabird Colonies, U. S. Dept. Interior, Fish and Wildl. Serv., Biol. Services Program FWS/ OBS, 37/80.

    Google Scholar 

  • Stahel, C. D., and Nicol, S. C., 1982, Temperature regulation in the Little Penguin, Eudyptula minor, in air and water, J. Comp. Physiol., B, 148: 93.

    Google Scholar 

  • Tucker, V. A., 1972, Metabolism during flight in the Laughing Gull, Larus atricilla, Am. J. Physiol., 222: 237.

    CAS  PubMed  Google Scholar 

  • Vleck, C. M., and Kenagy, G. J., 1980, Embryonic metabolism of the Fork-tailed Storm Petrel: physiological patterns during prolonged and interrupted incubation, Physiol. Zool., 53: 32.

    Google Scholar 

  • Vleck, C. M., Vleck, D., and Hoyt, D. F., 1980, Patterns of meta- bolism and growth in avian embryos, Amer. Zool., 20: 405.

    Google Scholar 

  • Warham, J., 1983, The composition of petrel eggs, Condor, 85: 194.

    Article  Google Scholar 

  • Warham, J., Watts, R., and Dainty, R. J., 1976, The composition, energy content and function of the stomach oils of petrels (order Procellariiformes), J. exp. Mar. Biol. Ecol., 23: 1.

    Article  CAS  Google Scholar 

  • Whittow, G. C., 1980, Physiological and ecological correlates of prolonged incubation in seabirds, Amer. Zool., 20: 427.

    Google Scholar 

  • Whittow, G. C., 1983, Physiological ecology of incubation in tropical seabirds, Studies in Avian Biol., in the press.

    Google Scholar 

  • Whittow, G. C., 1984a, Regulation of body temperature, in: “Avian Physiology”, 4th ed., P. D. Sturkie, ed., Springer-Verlag, New York.

    Google Scholar 

  • Whittow, G. C., 1984b, Energy metabolism, in: “Avian Physiology”, th ed., P. D. Sturkie, ed., Springer-Verlag, New York.

    Google Scholar 

  • Williams, A. J., Siegfried, W. R., and Cooper, J., 1982, Egg composition and hatchling precocity in seabirds, Ibis, 124: 456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Rahn, H., Whittow, G.C. (1984). Introduction. In: Whittow, G.C., Rahn, H. (eds) Seabird Energetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4859-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4859-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4861-0

  • Online ISBN: 978-1-4684-4859-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics