Oncogenes and the Neoplastic Process

  • Stuart A. Aaronson
  • Yasuhito Yuasa
  • Keith C. Robbins
  • Alessandra Eva
  • Rosita Gol
  • Steven R. Tronick


The quest to understand the mechanisms by which normal human cells become malignant has been aided immeasurably by research on oncogenic retroviruses (oncoviruses). Two major groups of oncoviruses have been recognized based on their biological properties1. One group, termed chronic transforming retroviruses, causes mostly leukemias when inoculated into susceptible animals but only after a latent period of several months. These viruses replicate in known assay cells in tissue culture without causing apparent transforming effects. The other group, known as acute transforming viruses, induces a variety of tumors within a very short time of days to a few weeks. The types of malignancies they cause include sarcomas, hematopoietic tumors, and even carcinomas. Cells infected with acute viruses undergo morphologic transformation, acquire the ability to grow in soft agar, and cause tumors when inoculated into susceptible hosts.


Transforming Gene NEOPLASTIC Process Avian Sarcoma Virus Murine Sarcoma Virus Acute Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Gross, “Oncogenic Viruses”, 2nd edit, Pergamon Press, Oxford (1970).Google Scholar
  2. 2.
    R. A. Weiss, N. Teich, H. Varmus, and R. J. Coffin, eds., “Molecular Biology of Tumor Viruses, RNA Tumor Viruses,” 2nd edit., Cold Spring Harbor Laboratory, New York, N. Y. (1982).Google Scholar
  3. 3.
    H. Temin, Function of the retrovirus long terminal repeat, Cell 28: 3 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    P. H. Duesberg, Retroviral transforming genes in normal cells?, Nature 304: 219 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    J. M. Bishop, in: “Ann. Rev. Biochemistry,” E. E. Snell, P. D. Boyer, A. Meister, and C. C. Richardson, eds., Academic Press, Palo Alto, CA. (1983).Google Scholar
  6. 6.
    K. C. Robbins, S. G. Devare, E. P. Reddy, and S. A. Aaronson, In vivo identification of the transforming gene product of simian sarcoma virus, Science 218:1131 (1982).Google Scholar
  7. 7.
    A. Srinivasan, C. Y. Dunn, Y. Yuasa, S. G. Devare, E. P. Reddy, and S. A. Aaronson, Abelson murine leukemia virus: structural requirements for transforming gene function, Proc. Natl. Acad. Sci. USA 79: 5508 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    M. S. Collet and R. L. Erickson, Protein kinase activity associated with the avian sarcoma virus src gene product, Proc. Natl. Acad. Sci. USA 75: 2021 (1978).CrossRefGoogle Scholar
  9. 9.
    A. D. Levinson, H. Opperman, L. Levintow, H. E. Varmus, and J. M. Bishop, Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein, Cell 15: 561 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    S. G. Devare, E. P. Reddy, J. D. Law, K. C. Robbins, and S. A. Aaronson, Nucleotide sequence of the simian sarcoma virus genome: demonstration that its acquired cellular sequences encode the putative transforming gene product p28sis, Proc. Natl. Acad. Sci. USA 80: 731 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    S. A. Aaronson, E. P. Reddy, K. Robbins, S. G. Devare, D. C. Swan, J. H. Pierce, and S. R. Tronick, in: “Human Carcinogenesis,” C. C. Harris and H. N. Autrup, eds. Academic Press, N. Y., in press.Google Scholar
  12. 12.
    J. H. Pierce and S. A. Aaronson, BALB- and Harvey-MSV transformation of a novel lymphoid progenitor cell, J. Exp. Med. 156: 873 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    J. H. Pierce and S. A. Aaronson, In vitro transformation of murine pre-B lymphoid cells by Snyder-Theilen sarcoma virus, J. Virol. 46:993 (1983).Google Scholar
  14. 14.
    N. Rosenberg and D. Baltimore, A quantitative assay for transformation of bone marrow cells by Abelson marine leukemia virus, J. Exp. Med. 143: 1453 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    B-Z. Shilo and R. A. Weinberg, DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaste, Proc Natl. Acad. Sci. USA 78: 6789 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    D. C. Swan, O. W. McBride, K. C. Robbins, D. A. Keithley, E. P. Reddy, and S. A. Aaronson, Chromosomal mapping of the simian sarcoma virus onc gene analogue in human cells, Proc. Natl. Acad. Sci. USA 79: 4691 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Prakash, O. W. McBride, D. C. Swan, S. G. Devare, S. R. Tronick, and S. A. Aaronson, Molecular cloning and chromosomal mapping of a human locus related to the transforming gene of Moloney murine sarcoma virus, Proc. Natl. Acad. Sci. USA 79: 5210 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Taub, I. Kirsch, C. Morton, G. Lenoir, D. C. Swan, S. Tronick, S. A. Aaronson, and P. Leder, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt’s lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79: 7837 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    O. W. McBride, D. S. Swan, K. C. Robbins, K. Prakash, and S. A. Aaronson, Chromosomal mapping of tumor virus transforming gene analogues in human cells, in: “Gene Transfer and Cancer 1982,” M. L. Pearson and N. L. Sternberg, eds., Raven Press, New York, in press.Google Scholar
  20. 20.
    O. W. McBride, D. C. Swan, E. Santos, M. Barbacid, S. R. Tronick, and S. A. Aaronson, Localization of the normal allele of T24 human bladder carcinoma oncogene to chromosome 11, Nature 300: 773 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Dalla Favera, R. C. Gallo, A. Giallongo, and C. M. Croce, Chromosomal localization of the human homolog (c-sis) of the simian sarcoma virus onc gene, Science 218: 686 (1982).CrossRefGoogle Scholar
  22. 22.
    R. Dalla-Favera, M. Bregni, J. Erikson, D. Patterson, R. C. Gallo, and C. M. Croce, Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79: 7824 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    B. G. Neel, S. C. Jhanwar, R. S. K. Chaganti, and W. S. Hayward, Two human c-onc genes are located on the long arm of chromosome 8, Proc. Natl. Acad. Sci. USA 79: 7842 (1982).PubMedCrossRefGoogle Scholar
  24. 24.
    B. De Martinville, J. Giacalone, C. Shih, R. A. Weinberg, and U. Francke, Oncogene from human EJ bladder carcinoma is located on the short arm of chromosome 11, Science 219: 498 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    A. Y. Sakaguchi, S. L. Naylor, T. B. Shows, J. J. Toole, M. McCoy, and R. A. Weinberg, Human c-Ki-ras-2 proto-oncogene on chromosome 12, Science 219: 1081 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Hall, C. J. Marshall, N. I. Spurr, and R. A. Weiss, Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1, Nature 303: 396 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    M. E. Harper, G. Franchini, J. Love, M. I. Simon, R. C. Gallo, and F. Wong-Staal, Chromosomal sublocalization of human c-myb and c-fes cellular one genes, Nature 304: 169 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    B. De Martinville, J. M. Cunningham, M. J. Murray, and U. Francke, The N-ras oncogene assigned to the short arm of human chromosome 1, Nucleic Acids Res. 11: 5267 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Ryan, P. E. Barker, K. Shimizu, M. Wigler, and F. Ruddle, Chromosomal assignment of a family of human oncogenes, Proc. Natl. Acad. Sci. USA 80: 4460 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    S. J. O’Brien, W. G. Nash, J. L. Goodwin, D. R. Lowy, and E. H. Chang, Dispersion of the ras family of transforming genes to four different chromosomes in man, Nature 302: 839 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Klein, The role of gene dosage and genetic transpositions in carcinogenesis, Nature 294: 313 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Ar-Rushdi, K. Nishikura, J. Erikson, R. Watt, G. Rovera, and C. M. Croce, Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma, Science 222: 390 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    A. de Klein, A. G. Van Kessel, G. Grosveld, C. R. Bartram, A. Hagemeijer, D. Bootsma, N. K. Spurr, N. Heisterkamp, J. Groffen, and J. R. Stephenson, A cellular oncogene is trans-located to the Philadelphia chromosome in chronic myelocytic leukaemia, Nature 300: 765 (1982).Google Scholar
  34. 34.
    J. Groffen, N. Heisterkamp, J. R. Stephenson, A. G. Van Kessel, A. de Klein, G. Grosveld, and D. Bootsma, C-sis is trans-located from chromosome 22 to chromosome 9 in chronic myelocytic leukemia, J. Exp. Med. 158: 9 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    D. Sheer, L. R. Hiorns, K. F. Stanley, P. N. Goodfellow, D. M. Swallow, S. Povey, N. Heisterkamp, J. Groffen, J. R. Stephenson, and E. Solomon, Genetic analysis of the 15;17 chromosome translocation associated with acute promyelocytic leukemia, Proc. Natl. Acad. Sci. USA 80: 5007 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    C. Shih, and R. A. Weinberg, Isolation of a transforming sequence from a human bladder carcinoma cell line, Cell 29: 161 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    S. Pulciani, E. Santos, A. V. Lauver, L. K. Long, K. C. Robbins, and M. Barbacid, Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells, Proc. Natl. Acad. Sci. USA 79: 2845 (1982).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Goldfard, K. Shimizu, M. Perucho, and M. Wigler, Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells, Nature (London) 296: 404 (1982).Google Scholar
  39. 39.
    E. Santos, S. R. Tronick, S. A. Aaronson, S. Pulciani, and M. Barbacid, The T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes, Nature 298: 343 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    L. F. Parada, C. J. Tabin, C. Shif, and R. A. Weinberg, Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene, Nature 297: 474 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    C. J. Der, T. G. Krontiris, and G. M. Cooper, Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses, Proc. Nat. Acad. Sci. USA 79: 3637 (1982).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Pulciani, E. Santos, A. V. Lauver, L. K. Long, S. A. Aaronson, and M. Barbacid, Oncogenes in solid human tumors, Nature 300: 539–542 (1982).PubMedCrossRefGoogle Scholar
  43. 43.
    R. Dhar, R. W. Ellis, T. Y. Shih, S. Oroszlan, B. Shapiro, J. Maizel, D. Lowy, and E. Scolnick, Nucleotide sequence of the p21 transforming protein of Harvey murine sarcoma virus, Science 217: 934 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    N. Tsuchida, R. Ryder, and E. Ohtsubo, Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus, Science 217: 937 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Eva, S. R. Tronick, R. A. Gol, J. H. Pierce, and S. A. Aaronson, Transforming genes of human hematopoietic tumors: frequent detection of ras-related oncogenes whose activation appears to be independent of tumor phenotype, Proc. Natl. Acad. Sci. USA 80: 4926 (1983).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Shimizu, M. Goldfarb, M. Perucho, and M. Wigler, Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line, Proc. Natl. Acad. Sci. USA 80: 383 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    G. Goubin, D. S. Goldman, J. Luce, P. E. Neiman, and G. M. Cooper, Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA, Nature 302: 114 (1983).PubMedCrossRefGoogle Scholar
  48. 48.
    C. J. Tabin, S. M. Bradley, C. I. Baugmann, R. A. Weinberg, A. G. Papageorge, E. M. Scolnick, R. Dhar, D. R. Lowy, and E. H. Chang, Mechanism of activation of a human oncogene, Nature 300: 143 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    E. P. Reddy, R. K. Reynolds, E. Santos, and M. Barbacid, A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene, Nature 300: 149 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    E. Taparowsky, Y. Suard, 0. Fasano, K. Shimizu, M. Goldfard, and M. Wigler, Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change, Nature 300: 762 (1982).PubMedCrossRefGoogle Scholar
  51. 51.
    D. J. Capon, E. Y. Chen, A. D. Levinson, P. H. Seeburg, and D. V. Goeddel, Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue, Nature 302: 33 (1983).PubMedCrossRefGoogle Scholar
  52. 52.
    Y. Yuasa, S. K. Srivastava, C. Y. Dunn, J. S. Rhim, E. P. Reddy, and S. A. Aaronson, Acquisition of transforming properties by alternative point mutations within c-bas/has human protooncogene, Nature 303: 775 (1983).PubMedCrossRefGoogle Scholar
  53. 53.
    Y. Yuasa, et. al., Manuscript in preparation, (1983).Google Scholar
  54. 54.
    K. Shimizu, D. Birnbaum, M. A. Ruley, O. Fasano, Y. Suard, L. Edlund, E. Taparowsky, M. Goldfard, and M. Wigler, Structure of the Ki-ras gene of the human lung carcinoma cell line Calu-1, Nature 304: 497 (1983).PubMedCrossRefGoogle Scholar
  55. 55.
    D. J. Capon, P. H. Seeburg, J. P. McGrath, J. S. Hayflick, U. Edman, A. D. Levinson, and D. V. Goeddel, Activation of Ki-ras-2 gene in human colon and lung carcinomas by two different point mutations, Nature 304: 507–513 (1983).PubMedCrossRefGoogle Scholar
  56. 56.
    E. Taparowsky, K. Shimizu, M. Goldfarb, and M. Wigler, Structure and activation of the human N-ras gene, Cell 34: 581 (1983).PubMedCrossRefGoogle Scholar
  57. 57.
    C. J. Der and G. M. Cooper, Altered gene products are associated with activation of cellular ras genes in human lung and colon carcinomas, Cell 32: 201 (1983).PubMedCrossRefGoogle Scholar
  58. 58.
    R. Ross, J. Glomset, B. Kariya, and L. Harker, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71: 1207 (1974).PubMedCrossRefGoogle Scholar
  59. 59.
    C. D. Scher, R. C. Shepard, H. N. Antoniades, and C. D. Stiles, Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle, Biochim. Biophys. Acta 560: 217 (1979).PubMedGoogle Scholar
  60. 60.
    C. H. Heldin, B. Westermark, and A. Wasteson, Platelet-derived growth factor: Purification and partial characterization, Proc. Natl. Acad. Sci. USA 76: 3722 (1979).PubMedCrossRefGoogle Scholar
  61. 61.
    H. N. Antoniades and L. T. Lewis, Human platelet-derived growth factor: structure and function, Fed. Proc. 42: 2630 (1983).PubMedGoogle Scholar
  62. 62.
    H. N. Antoniades and M. W. Hunkapiller, Human platelet-derived growth factor (PDGF): amino-terminal amino acid sequence, Science 220: 963 (1983).PubMedCrossRefGoogle Scholar
  63. 63.
    R. F. Doolittle, M. W. Hunkapiller, L. E. Hood, S. G. Devare, K. C. Robbins, S. A. Aaronson, and H. N. Antoniades, Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science 221: 275 (1983).PubMedCrossRefGoogle Scholar
  64. 64.
    M. D. Waterfield, G. T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C. H. Heldin, J. S. Huang, and T. F. Deuel, Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus, Nature 304: 36 (1983).CrossRefGoogle Scholar
  65. 65.
    K. C. Robbins, R. L. Hill, and S. A. Aaronson, Primate origin of the cell-derived sequences of simian sarcoma virus, J. Virol. 41: 721 (1982).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Stuart A. Aaronson
    • 1
  • Yasuhito Yuasa
    • 1
  • Keith C. Robbins
    • 1
  • Alessandra Eva
    • 1
  • Rosita Gol
    • 1
  • Steven R. Tronick
    • 1
  1. 1.Laboratory of Cellular and Molecular BiologyNational Cancer InstituteBethesdaUSA

Personalised recommendations