Smooth Muscle Electrophysiology

  • Joseph H. Szurszewski
Part of the NATO ASI Series book series (volume 80)


Individual smooth muscle cells are tapered structures. The average diameter of a smooth muscle cell at its widest point is about 3µm1. The average length in the gastrointestinal tract ranges from 200 to 400 µm1. The cells are packed into bundles; within a bundle each cell has a polyhedral profile and is surrounded by neighboring cells1. Each cell in the bundle is surrounded by about 12 other cells at any point along its length and approximately equal numbers of cells overlap either end of any given cell1. The geometrical packing of these bundles determines the shape of the muscle. If the bundles weave a three dimensional pattern, the shape will be rod-like as in the taenia of the human colon. If the weaving is planar, the shape will be a sheet-like structure.


Slow Wave Rest Membrane Potential Circular Muscle Mechanical Threshold Plateau Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Burnstock, Structure of smooth muscle and its innervation, in: Smooth Muscle, E. Blilbring, A. F. Brading, A. W. Jones and T. Tomita, eds., pp 1–69, Williams and Wilkins, Baltimore (1970).Google Scholar
  2. 2.
    A. W. Jones, Content and fluxes of electrolytes, in: Handbook of Physiology, The Cardiovascular System, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds., pp 253–299, Waverly Press, Baltimore (1980).Google Scholar
  3. 3.
    R. Casteels, The relation between the membrane potential and the ion distribution in smooth muscle cells, in: Smooth Muscle, E. Biilbring, A. F. Brading, A. W. Jones, and T. Tomita, eds., pp 70–99, Williams and Wilkins, Baltimore (1970).Google Scholar
  4. 4.
    R. Casteels, G. Droogmans, and H. Hendrickx, Electrogenic sodium pump in smooth muscle cells of the guinea pig taenia coli, Philos. Trans. R. Lond. (Biol.) 265:47–56 (1973).CrossRefGoogle Scholar
  5. 5.
    J. H. Widdicombe, Ouabain-sensitive ion fluxes in the smooth muscle of the guinea-pig’s taenia coli, J. Physiol. (Lond.) 266:235–254 (1977).Google Scholar
  6. 6.
    J. H. Widdicombe, and A. F. Brading, A possible role of linked Na and CI movement in active CI uptake in smooth muscle, Pfluegers Arch. 386:35–37 (1980).CrossRefGoogle Scholar
  7. J. H. Szurszewski, Electrical basis for gastrointestinal motility, in: Physiology the Gastrointestinal Tract, L. R. Johnson, ed., pp 1435–1466, Raven Press, New York (1981).Google Scholar
  8. B. Johansson, and A. P. Somlyo, Electrophysiology and excitation-contraction coupling, in: Handbook of Physiology, The Cardiovascular System, D. F. Bohr, A. P. Somlyo, and H. V. Sparks, eds., pp 301–323, Waverly Press, Baltimore (1980).Google Scholar
  9. 9.
    K. G. Morgan, T. C. Muir, and J. H. Szurszewski, The electrical basis for contraction and relaxation in canine fundal smooth muscle, J. Physiol. (Lond.) 311:475–488 (1981).Google Scholar
  10. 10.
    T. B. Bolton, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev. 59:606–718 (1979).PubMedGoogle Scholar
  11. A. F. Brading, and P. Sneddon, Evidence for multiple sources of calcium for activation of the contractile mechanism of guineapig taenia coli on stimulation with carbachol, Br. J. Pharmacol. 70:229–240 (1980).PubMedGoogle Scholar
  12. 12.
    A. F. Brading, Maintenance of ionic composition, Med. Bull. 35:227–234 (1979).Google Scholar
  13. 13.
    K. G. Morgan, and J. H. Szurszewski, Mechanisms of phasic and tonic actions of pentagastrin on canine gastric smooth muscle, J. Physiol. (Lond.) 301:229–242 (1980).Google Scholar
  14. T. Y. El-Sharkawy, K. G. Morgan, and J. H. Szurszewski, Intracellular electrical activity of canine and human gastric smooth muscle, J. Physiol. (Lond.) 279:291–307 (1978).Google Scholar
  15. 15.
    K. A. Kelly, C. F. Code, and L. R. Elveback, Patterns of canine gastric electric activity, J. Physiol. 217:461–470 (1969).Google Scholar
  16. 16.
    K. Milenov, On the rhythm of the electrical and motor activities in intact stomachs and after transverse resections, Izv. Inst. Fiziol. (Sofia) 11:79–86 (1968).Google Scholar
  17. 17.
    K. Sugawara, An electromyographic study on the motility of canine stomach after transection and end-to-end anastomosis, Tohoku J. Exp. Med. 84:113–124 (1964).PubMedCrossRefGoogle Scholar
  18. 18.
    K. G. Morgan, P. F. Schmalz, V. L. W. Go, and J. H. Szurszewski, Effects of pentagastrin, G17 and G34 on the electrical and mechanical activities of canine antral smooth muscle. Gastroenterology 75:405–412 (1978).PubMedGoogle Scholar
  19. 19.
    K. G. Morgan, P. F. Schmalz, V. L. W. Go, and J. H. Szurszewski, Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle, J. Physiol. 235:E324-E329 (1978).Google Scholar
  20. 20.
    Y. Hard, and J. H. Szurszewski, Mechanical and intracellular electrical activity of smooth muscle of the canine jejunum. Gastroenterology 80:1169 (1981).Google Scholar
  21. 21.
    C. F. Code, and J. H. Szurszewski, The effect of duodenal and mid small bowel transection on the frequency gradient of the pacesetter potential in the canine small intestine, Physiol. (Lond.) 207:281–289 (1970).Google Scholar
  22. 22.
    C. E. Bunker, L. P. Johnson, and T. S. Nelsen, Chronic in situ studies of the electrical activity of the small intestine. Arch. Surg. 95:259–268 (1967).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Christensen, H. P. Schedl, and J. A. Clifton, The small intestinal basic electrical rhythm (slow wave) frequency gradient in normal men and in patients with a variety of diseases. Gastroenterology 50:309–315 (1966).PubMedGoogle Scholar
  24. 24.
    K. M. Sanders, Excitation-contraction coupling without Calaction potentials in smooth muscle, Physiol. C356-C361 (1983).Google Scholar
  25. 25.
    J. Christensen, R. Caprilli, and G. F. Lund, Electric slow waves in circular muscle of cat colon, J. Physiol. 217:771–776 (1969).Google Scholar
  26. 26.
    M. Kocylowski, K. L. Bowes, and Y. J. Kingma, Electrical and mechanical activity in the ex vivo perfused total canine colon. Gastroenterology 77:1021–1026 (1979).PubMedGoogle Scholar
  27. 27.
    M. Wienbeck, J. Christensen, and N. W. Weisbrodt, Electromyography of the colon in the unanesthetized cat. Dig. Pis. Sei. 17:356–362 (1972).CrossRefGoogle Scholar
  28. 28.
    J. Christensen, and R. L. Hauser, Longitudinal axial coupling of slow waves in proximal cat colon, to. Physiol. 221:246–250 (1971).Google Scholar
  29. 29.
    J. Marimon, Biträge zur Kenntnis der Darmbewegungen, Inaugural dissertation, Gschade, Berlin (1907)Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joseph H. Szurszewski
    • 1
  1. 1.Department of Physiology and BiophysicsMayo Foundation and ClinicRochesterUSA

Personalised recommendations