Relationships among Intestinal Motility, Transit and Absorption

  • Sidney F. Phillips
Part of the NATO ASI Series book series (volume 80)


That relationships exist among motor events, transit of chyme and absorption in the intestine has an intuitive appeal. However, although the subject has been addressed experimentally, the development of adequate methodological approaches has not been easy. These difficulties are due, in part, to the interconnected or even parallel controls of absorptive and motor functions. Common modulating factors which need to be considered include integration of motility, transit and absorption by the central and enteric nervous systems, by local or systemic regulatory peptides, as well as by local physical conditions within the gut. Thus, neural stimuli, local chemo-regulators and pharmacologically active agents may evoke simultaneously a response from intestinal smooth muscle, from mucosal tissues and from the abdominal vasculature1. At another level of control, there appear to exist chronobiological rhythms which influence motor function, secretion and absorption together. It has even been proposed that these apparently diverse functions of the gut constitute a single effector system—a concept first expounded by Boldyreff early in the century2,3. Moreover, impaired absorption is able to influence per se the motor properties of the bowel. Malabsorption can lead to the accumulation of chemical stimuli within the lumen (e.g. fat, bile acids) which affect both absorption and motility4,5, and distention of the bowel by unabsorbed fluid can alter motor patterns. These difficulties are compounded by our still rudimentary understanding of those motor events which facilitate the other fundamental functions of the bowel. Any or all of the motor events which promote intraluminal mixing, modify propulsion along the bowel, control the movement of villi, or which aid lymphatic or venous drainage could constitute key events in absorption. At this time, the subject can only be approached piece-meal, from clinical observations of pathophysiological states and from fragmentary experimental observations. However, the general argument can be made that, when integrated transit of ch3mie is disturbed, absorptive mechanisms are often impaired. This review will then examine a number of phenomena, but no conclusions are possible currently. More specific experimental approaches must be applied if we wish to elucidate better these associations.


Vasoactive Intestinal Polypeptide Short Bowel Syndrome Motor Event Intestinal Villus Propulsive Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Gershon and S. M. Erde. The nervous system of the gut. Gastroenterology, 80:1571 (1981).PubMedGoogle Scholar
  2. 2.
    V. N. Boldyreff. Various papers from 1902 onwards; for a review of these, see reference 3.Google Scholar
  3. 3.
    D. L. Wingate. Backwards and forwards with the migrating complex. Dig. Dis. Sci., 26:541 (1981).CrossRefGoogle Scholar
  4. 4.
    S. F. Phillips and T. S. Gaginella. Intestinal secretion as a mechanism in diarrheal disease. Progress in Gastroenterology, In G. B. J. Glass (ed.). Grune & Stratton, New York (1977).Google Scholar
  5. 5.
    G. Van Trappen, J. Janssens and T. L. Peeters. The migrating motor complex. Med. Clin. North Am., 65:1311 (1981).Google Scholar
  6. 6.
    E. O. Macagno and J. Christensen. Fluid mechanics of gastrointestinal flow. Physiology of the Gastrointestinal Tract, L. R. Johnson (ed.). Raven Press, New York (1981).Google Scholar
  7. 7.
    J. Christensen and E. O. Macagno. Small intestinal motility: the problems of relating contractions to flow. Frontiers of Knowledge in the Diarrheal Diseases, H. Janowitz, D. B. Sachar (ed.). Upper Montclair NJ Projects in Health, (1979).Google Scholar
  8. 8.
    W. A. Weems. The intestin as a fluid propelling system. Ann. Rev. Physiol., 43:9 (1981).CrossRefGoogle Scholar
  9. 9.
    A. M. Connell. Motor action of the large bowel. Handbook of Physiology, Section 6, Volume 4, C. F. Code (ed.), American Physiological Society, Washington, D.C. (1968).Google Scholar
  10. 10.
    J. H. Szurszewski. A migrating motor complex of the canine small intestine. Am. J. Physiol., 217:1757 (1969).PubMedGoogle Scholar
  11. 11.
    D. L. Wingate. Motility of the small intestine. In Small Intestine, V. S. Chadwick and S. F. Phillips (eds.). Butterworths, London (1982).Google Scholar
  12. 12.
    C. F. Code and J. F. Schlegel. The gastrointestinal interdigestive housekeeper. In Proceedings of the 4th International Symposium on Gastrointestinal Motility, Mitchell Press, Vancouver, (1974).Google Scholar
  13. 13.
    D. A. Reinke, A. H. Rosenbaum and D. R. Bennett. Patterns of dog gastrointestinal contractile activity monitored in vivo with extraluminal force transducers. Am. J. Dig. Dis., 12:113 (1967).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Bueno, J. Fioramonti and Y. Ruckebusch. Rate of flow of digesta and electrical activity of the small intestine in dogs and sheep. J. Physiol. (London), 249:69 (1975).Google Scholar
  15. 15.
    W. Kruis and S, F. Phillips. High pressure propulsive forces of the canine ileum. Clin. Res., in press.Google Scholar
  16. 16.
    P. Kerlin, A. Zinsmeister and S. F. Phillips. Relationship of motility to flow of contents in the human small intestine. Gastroenterology, 82:701 (1982).PubMedGoogle Scholar
  17. 17.
    C. F. Code. Diarrheogenic motor and electrical patterns in the bowel. Frontiers of Knowledge in the Diarrheal Diseases, H. D. Janowitz and D. B. Sachar (eds.). Upper Montclair, NJ: Projects in Health, (1979).Google Scholar
  18. 18.
    J. A. Marlett and C. F. Code. Effects of celiac and superior mesenteric ganglionectomy on interdigestive myoelectrical complexes in the dog. Am. J. Physiol., 237:E432Google Scholar
  19. 19.
    P. Fleckenstein. Migrating electrical spike activity in the fasting human small intestine. Dig. Dis. Sci., 23:769 (1978).CrossRefGoogle Scholar
  20. 20.
    R.W. Summers, S. Anuras and J. Green. Jejunal manometry patterns in health, partial obstruction, and pseudoobstruction. Gastroenterology, in press.Google Scholar
  21. 21.
    N.S. Duskieker and R. W. Summers. Longitudinal and circumferential spread of spike bursts in canine jejunum in vivo. Am. J. Physiol., 239:G6311 (1980).Google Scholar
  22. 22.
    J.R. Mathias, G. M. Carlson, J. L. Marlin, R. P. Shields and S. Farnal. Shigella dependence. I. Enterotoxin: Proposed role in pathogenesis of Shigellisis. Amer. J. Physiol., 239:G382.Google Scholar
  23. 23.
    J.R. Mathias, J. L. Marlin, T. W. Burns, G. H. Carlson and R. P. Shields. Ricinoleic acid effects on the electrical activity of the small intestine in rabbits. J. Clin. Invest., 61:640 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    E.P. DiMagno, J. Hendricks, V. L. W. Go and R. R. Dozois. Relationship among canine fasting pancreatic and biliary secretions, pancreatic duct pressure and duodenal phase III activity: Boldyreff revisited. Dig. Dis. Sci., 24:689 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    G. Van Trappen, T. L. Peeters and J. Janssens. The secretory component of the interdigestive migrating motor complex in man. Scand. J. Gastroenterol., 14:663 (1979).Google Scholar
  26. 26.
    N. W. Read. The migrating motor complex and spontaneous fluctuations of transmural potential difference in the human small intestine. In Gastrointestinal Motility, J. Christensen (ed.). Raven Press, New York (1980).Google Scholar
  27. 27.
    G. J. Devroede and S. F. Phillips. Studies of the perfusion technique for colonic absorption. Gastroenterology, 56:92 (1969).PubMedGoogle Scholar
  28. 28.
    R. L. Dillard, H. Eastman and J. S. Fordtran. Volume-flow relationships during the transport of fluid through the human small intestine. Gastroenterology, 49:58 (1965).Google Scholar
  29. 29.
    C. Johansson. Studies of gastrointestinal interactions. Scand. J. Gastroent., (Suppl 28), 9:1 (1974).Google Scholar
  30. 30.
    H. W. Read, C. A. Miles, D. Fisher, A. M» Holgate, N.D. Kime, M. A. Mitchell, A. M. Reeve, T. B. Roche and M. Walker. Transit of a meal through the stomach, small intestine and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology, 79:1276 (1980).PubMedGoogle Scholar
  31. 31.
    P. A. Cann, N. W. Read, C. Brown, N. Hobson and C. D. Holdsworth. Irritable bowel syndrome: relationship of disorders in the transit of a single solid meal to symptom patterns. Gut, 24:405 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Molla, A. M. Molla, S. A. Sarker and M. Khatun. Wholegut transit time and its relationship to absorption of macronutrients during diarrhoea and after recovery. Scand. J. Gastroent., 18:537 (1983).Google Scholar
  33. 33.
    J. Collin, K. A. Kelly and S. F. Phillips. Increased canine jejunal absorption of water, glucose and sodium with intestinal pacing. Dig. Dis. Sci., 23:1121 (1978).CrossRefGoogle Scholar
  34. 34.
    J. Collin, K. A. Kelly and S. F. Phillips. Absorption from the jejunum is increased by forward and backward pacing. Br. J. Surg., 66:489 (1979).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Gladen and K. A. Kelly. Enhancing absorption in the canine short bowel syndrome by intestinal pacing. Surgery, 88:281 (1980).PubMedGoogle Scholar
  36. 36.
    H. Gladen and K. A. Kelly. Electrical pacing for short bowel syndrome. Surg. Gynecol. Obstet., 153:697 (1981).PubMedGoogle Scholar
  37. 37.
    J. S. McKay, B. D. Linaker and L. A. Turnberg. The influence of opiates on ion transport across rabbit ileal mucosa. Gastroenterology, 80:279 (1981).PubMedGoogle Scholar
  38. 38.
    F. D. Loo, S. Sarna, K. H. Soergel, J.A. Cunningham, C. M. Wood and V. E. Cowles. Effect of morphine on human jejunal motility and flow in the fed state. Gastroenterology, 84:1233 (1983).Google Scholar
  39. 39.
    S. Sarna, R. E. Condon and V. E. Cowles. Morphine versus motilin in the initiation of the migrating motor complexes. Dig. Dis. Sci., 27:656 (1982).CrossRefGoogle Scholar
  40. 40.
    K. A. Kelly. Motility of the stomach and gastroduodenal junction. Physiology of the Gastrointestinal Tract, L. R. Johnson (ed.). Raven Press, New York (1981).Google Scholar
  41. 41.
    J. H. Meyer. Chronic morbidity after gastric surgery. Gastrointestinal Disease, M. H. Sleisenger and J. S. Fordtran (eds.). W. B. Saunders, Philadelphia (1978).Google Scholar
  42. 42.
    A. Cortot, S. F. Phillips and J.-R. Malagelada. Different rates of fat absorption from homogenized and solid meals. GUT, 19:968 (1978).Google Scholar
  43. 43.
    M. Kelley, E. A. Gordon and J. A. DeWeese. Pressure studies of the ileocolonic junctional zone of dogs. Am. J. Physiol., 209:333 (1965).PubMedGoogle Scholar
  44. 44.
    S. Cohen, L. D. Harris and R. Levitan. Manometric characteristics of the human ileocecal junctional zone. Gastroenterology, 54:72 (1968).PubMedGoogle Scholar
  45. 45.
    E. Quigley, B. Taylor, J. Dent, K. A. Kelly and S. F. Phillips. Interdigestive and postprandial pressures in the ileo-cecal sphincter. Gastroenterology, 82:1153 (1982).Google Scholar
  46. 46.
    E. M. M. Quigley and S. F. Phillips. Interdigestive patterns of intraluminal pressure at the canine ileocolonic junction. Gastroenterology, 84:1279 (1983).Google Scholar
  47. 47.
    E. M. M. Quigley, S. F. Phillips, M. Wienbeck and R. L. Tucker. Fasting patterns of motility at the ileocolonic junction in normal man (abstract). Gastroenterology, 84:1279 (1983).Google Scholar
  48. 48.
    B. F. Hambleton. Note upon the movements of the intestinal villi. Am. J. Physiol., 34:446 (1914).Google Scholar
  49. 49.
    C. E. King and L. Arnold. The activities of the intestinal mucosal motor mechanism. Am. J. Physiol., 59:97 (1922).Google Scholar
  50. 50.
    J. T. Sessions, S. R. Viegas de Indrade and E. Kokas. Intestinal villi: Forward motility in relation to function. In Progress in Gastroenterology, G. B. J. Glass (ed.), Grune & Stratton, New York (1968).Google Scholar
  51. 51.
    E. Kokas, J. L. Davis and W. D. Brunson. Separation of villikinin-like substance from intestinal mucosal extract. Arch. Int. Pharmacodyn. Ther., 191:310 (1971).PubMedGoogle Scholar
  52. 52.
    W. L. Joyner and E. Kokas. Effect of venous gastrointestinal hormones and vasoactive substances on villous motility. Comp. Biochem. Physiol., 46A:171 (1973).CrossRefGoogle Scholar
  53. 53.
    B. Sandstrom. A contribution to the concept of brush border function. Observations in intestinal epithelium in tissue culture. Cytobiologie, 3:293 (1971).Google Scholar
  54. 54.
    A. Bretscher and K. Weber. Localization of action and microfilament associated proteins in the microvilli and terminal web of the intestinal brush border by immunofluorescence microscopy. J. Cell Biol., 79:839 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    D.R. Burgess. Reactivation of intestinal epithelial cell brush border motility: ATP-dependent contraction via a terminal web contractile ring. J. Cell Biol., 94:853 (1982).CrossRefGoogle Scholar
  56. 56.
    T.C.S. Keller and M.S. Mooseker. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J. Cell Biol., 95:943 (1982).PubMedCrossRefGoogle Scholar
  57. 57.
    J. S. Trier and J. L. Madara. Functional morphology of the mucosa of the small intestine. Physiology of the Gastrointestinal Tract, L. R. Johnson (ed.). Raven Press, New York (1981).Google Scholar
  58. 58.
    F. Angel, P. F. Schmalz, K. G. Morgan, V. L. W. Go and J. H. Szurszewski. Innervation of the mucularis mucosa in the canine stomach and colon. Scand. J. Gastroenterol., 17:71 (1982).Google Scholar
  59. 59.
    F. Angel, V. L. W. Go, P. F. Schmalz and J. H. Szurszewski. Vasoactive intestinal polypeptide: a putative neurotransmitter in the canine gastric muscularis mucosa. J. Physiol., in press.Google Scholar
  60. 60.
    J. M. Dietschy, V. L. Salle and F. A. Wilson. (1971). Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology, 61:932 (1971).PubMedGoogle Scholar
  61. 61.
    J. S. Lee. Effect of stretching and stirring on water and glucose absorption by canine mucosal membrane. J. Physiol. (London), 335:335 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Sidney F. Phillips
    • 1
  1. 1.Gastroenterology Unit, Mayo ClinicMayo Medical SchoolRochesterUSA

Personalised recommendations