Membranes and Channels Physiology and Molecular Biology

  • Robert S. Eisenberg


Most of the papers in this book discuss the properties and roles of channels in membranes, and the methods needed to investigate them. Work on channels has evolved (in large measure) from older work on the properties of membranes themselves. Since channels are the major pathways for solute movement, the mechanism of solute movement can best be investigated when channels are embedded in as simple a membrane as possible, attached to as simple an apparatus as possible. Indeed, that is why single channel measurements, as described in several chapters in this book, have created such excitement and are so promising for the future of membrane biophysics.


Chaotic System Extracellular Space Skeletal Muscle Fiber Extracellular Concentration Dendritic Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., 1969a, The kinetics of mechanical activation in frog muscle, J. Physiol., 204:207.PubMedGoogle Scholar
  2. Adrian, R. H., Costantin, L. L., and Peachey, L. D., 1969b, Radial spread of contraction in frog muscle fibers, J. Physiol., 204:231.PubMedGoogle Scholar
  3. Armstrong, C. M., and Bezanilla, F., 1974, Charge movement associated with the opening and closing of the activation gates of the Na channels, J. Gen. Physiol., 63:533.PubMedCrossRefGoogle Scholar
  4. Bezanilla, F., Taylor, R. E., and Fernandez, J. M., 1982, Distribution and kinetics of membrane polarization. I. Long-term inactivation of gating current, J. Gen. Physiol., 79:21.PubMedCrossRefGoogle Scholar
  5. Blinks, J. R., 1965, Influence of osmotic strength on cross-section and volume of isolated single muscle fibers, J. Physiol., 177:42.PubMedGoogle Scholar
  6. Clausen, C., Lewis, S. A., and Diamond, J. M., 1979, Impedance analysis of a tight epithelium using a distributed resistance model, Biophys. J., 26:291.PubMedCrossRefGoogle Scholar
  7. Costantin, L. L., 1975, Contractile activation in skeletal muscle, Prog. Biophys. Molec. Biol., 29:197.CrossRefGoogle Scholar
  8. Diamond, J. M., and Machen, T. E., 1983, Impedance analysis in epithelia and the problem of gastric acid secretion, J. Memb. Biol., 72:17.CrossRefGoogle Scholar
  9. Dormer, K. J., 1980, “Fundamental Tissue Geometry for Biologists,” Cambridge University Press, New York.Google Scholar
  10. Eisenberg, B. R., and Cohen, I. S., 1983, The ultrastructure of the cardiac Purkinje strand in the dog: a morphometric analysis, Proc. R. Soc. Lond., 217:191.PubMedCrossRefGoogle Scholar
  11. Eisenberg, B. R., and Gilai, A., 1979, Structural changes in skeletal muscle fibers after stimulation at a low frequency, J. Gen.Physiol., 74:1.PubMedCrossRefGoogle Scholar
  12. Eisenberg, R. S., Barcilon, V., and Mathias, R. T., 1979, Electrical properties of spherical syncytia, Biophys. J., 25:151.PubMedCrossRefGoogle Scholar
  13. Eisenberg, R. S., and Johnson, E. A., 1970, Three dimensional electrical field problems in physiology, Prog. Biophys. Mol. Biol., 20:1.CrossRefGoogle Scholar
  14. Eisenberg, R. S., and Mathias, R. T., 1980, Structural analysis of electrical properties of cells and tissues, Crit. Rev. Bioengr., 4:203.Google Scholar
  15. Eisenberg, R. S., Mathias, R. T., and Rae, J. L., 1977, Measurement, modelling and analysis of the linear electrical properties of cells, Ann. N.Y. Acad. Sci., 303:342.PubMedGoogle Scholar
  16. Eisenberg, R. S., McCarthy, R. T., and Milton, R. L., 1983, Paralysis of frog skeletal muscle fibers by the calcium antagonist D-600, J. Physiol., 341:495.PubMedGoogle Scholar
  17. Falk, G., and Fatt, P., 1964, Linear electrical properties of striated muscle fibers observed with intracellular electrodes, Proc. R. Soc. Lond. B. Biol. Sci., 160:69.PubMedCrossRefGoogle Scholar
  18. Feigenbaum, M. J., 1980, Universal behavior in nonlinear systems. Los Alamos Sci., 1:4.Google Scholar
  19. Ferme, G., and Perutz, M. F., 1981, “Haemoglobin and Myoglobin. Atlas of Molecular Structures in Biology.” Oxford University Press, London.Google Scholar
  20. Fernandez, J. M., Bezanilla, F., and Taylor, R. E., 1982, Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating current, J. Gen. Physiol., 79:41.PubMedCrossRefGoogle Scholar
  21. Guckenheimer, J., 1982, Noise in chaotic systems, Nature, 298:358.CrossRefGoogle Scholar
  22. Gurel, O. and Rossler, O. E. (editors), 1979. “Bifurcation Theory and Applications in Scientific Disciplines,” Annals N.Y. Acad. Sci., Vol. 316, New York.Google Scholar
  23. Jack, J. J. B., Nobel, D., and Tsien, R. W., 1975, “Electrical Current Flow in Excitable Cells,” Clarendon Press, Oxford.Google Scholar
  24. Kevorkian, J. and Cole, J. D., 1981, “Perturbation Methods in Applied Mathematics,” Springer-Verlag, New York.Google Scholar
  25. Levis, R. A., Mathias, R. T., and Eisenberg, R. S., 1983, Electrical properties of sheep Purkinje strands. Electrical and chemical potentials in the clefts. Biophys. J., 44:225.PubMedCrossRefGoogle Scholar
  26. Mathias, R. T., 1975, A study of the electrical properties of the transverse tubular system in skeletal muscle. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  27. Mathias, R. T., 1983, Effect of tortuous extracellular pathways on resistance measurements, Biophys. J., 42:55.PubMedCrossRefGoogle Scholar
  28. Mathias, R. T., Eisenberg, R. S., and Valdiosera, R., 1977, Electrical properties of frog skeletal muscle fibers interpreted with a mesh model of the t-system, Biophys. J., 17:57.PubMedCrossRefGoogle Scholar
  29. Mathias, R. T., Levis, R. A., and Eisenberg, R. S., 1980, Electrical models of excitation contraction coupling and charge movement in skeletal muscle, J. Gen. Physiol., 76:1.PubMedCrossRefGoogle Scholar
  30. Mathias, R. T., Rae, J. L., Eisenberg, R. S., 1979, Electrical properties of structural components of the crystalline lens, Biophys. J., 25:181.PubMedCrossRefGoogle Scholar
  31. May, R., 1976, Simple mathematical models with very complicated dynamics, Nature, 261:459.PubMedCrossRefGoogle Scholar
  32. May, R. M. and Oster, G. F., 1976, Bifurcations and dynamic complexity in simple ecological models, Amer. Naturalist, 110:573.CrossRefGoogle Scholar
  33. Meinhardt, H., 1979, The random character of bifurcations and the reproducible process of embryonic development, Annal. N.Y. Acad. Sci., 316:188.CrossRefGoogle Scholar
  34. Mikkelsen, R. B., and Wallach, D. F. H., 1976, Photoactivated cross-linking of proteins within the erythrocyte membrane core, J. Biol. Chem., 251:7413.PubMedGoogle Scholar
  35. Miller, W. T., and Geselowitz, D. B., 1978, Simulation studies of the electrocardiogram. I. The Normal Heart, Circ. Res., 43:301.PubMedGoogle Scholar
  36. Miyamoto, H., and Racker, E., 1982, Mechanism of calcium release from skeletal sarcoplasmic reticulum, J. Memb. Biol., 66:193.CrossRefGoogle Scholar
  37. Peachey, L. D., and Adrian, R. (editors) 1984, “Handbook of Physiology, Section 10: Skeletal Muscle,” Williams and Wilkins, Baltimore.Google Scholar
  38. Peskoff, A., and Eisenberg, R. S., 1973, Interpretation of some microelectrode measurements of electrical properties of cells, Ann. Rev. Biophys. and Bioeng., 2:56.Google Scholar
  39. Peskoff, A., and Eisenberg, R. S., 1975, The time-dependent potential in a spherical cell using matched asymptotic expansions, J. Math. Biol., 2:277.CrossRefGoogle Scholar
  40. Peskoff, A., Eisenberg, R. S., and Cole, J. D., 1976, Matched asymptotic expansions of the Green’s function for the electrical potential in an infinite cylindrical cell, SIAM. J. Appl. Math., 30:222.CrossRefGoogle Scholar
  41. Plonsey, R., and Rudy, Y., 1980, Electrocardiogram sources in a 2-dimensional anisotropic activation model, Med. & Biol. Eng. and Comput., 18:87.CrossRefGoogle Scholar
  42. Ruelle, D., 1980, Strange attractors, Math. Intell., 2:126.CrossRefGoogle Scholar
  43. Schifferdecker, E., and Frömter, E., 1978, The AC impedance of Necturus gallbladder epithelium, Pflügers Archiv., 377:125.PubMedCrossRefGoogle Scholar
  44. Schneider, M. F., 1970, Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers, J. Gen. Physiol., 56:640.PubMedCrossRefGoogle Scholar
  45. Schneider, M. F., and Chandler, W. K., 1973, Voltage dependent charge movement in skeletal muscle: A possible step in excitation-contraction coupling, Nature, 242:244.PubMedCrossRefGoogle Scholar
  46. Valdiosera, R., Clausen, C, and Eisenberg, R. S., 1974a, Circuit models of the passive electrical properties of frog skeletal muscle fibers, J. Gen. Physiol., 63:432.PubMedCrossRefGoogle Scholar
  47. Valdiosera, R., Clausen, C, and Eisenberg, R. S., 1974b, Impedance of frog skeletal muscle fibers in various solutions, J. Gen. Physiol., 63:460.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert S. Eisenberg
    • 1
  1. 1.Department of PhysiologyRush Medical CollegeChicagoUSA

Personalised recommendations