Noise Analysis of Transport through Apical Sodium Channels of Tight Amphibian Epithelia

  • Bernd Lindemann
  • Jack H.-Y. Li


Among the pecularities of epithelial tissues two are of special concern for noise analysis: the complex architecture and the multitude of transport regulating mechanisms.


Apical Membrane Basolateral Membrane Noise Analysis Frog Skin Channel Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceves, J., and Cuthbert, A. W., 1979, Uptake of [3H] Benzami1 at different sodium concentrations. Inferences regarding the regulation of sodium permeability, J. Physiol., 295:491.Google Scholar
  2. Armstrong, C. M., 1975, Evidence for ionic pores in excitable membranes, Biophysical J., 15:932.CrossRefGoogle Scholar
  3. Benos, D., Latorre, R., and Reyes, J., 1981, Surface potentials and sodium entry in frog skin epithelium, J. Physiol., 321:163.PubMedGoogle Scholar
  4. Bevevino, L. H., and Lacaz-Vieira, F., 1982, Control of sodium permeability of the outer barrier in toad skin, J. Membrane Biol., 66:97.CrossRefGoogle Scholar
  5. Bindslev, N., Cuthbert, A. W., Edwardson, J. M., and Skadhauge, E., 1982, Kinetics of amiloride action in the hen coprodaeum in vitro, Pflügers Arch., 392:340.PubMedCrossRefGoogle Scholar
  6. Cereijido, M., Herrera, F. C., Flanigan, W. J., and Curran, P. F., 1964, The influence of Na concentration on Na transport across frog skin, J. Gen. Physiol., 47:879.PubMedCrossRefGoogle Scholar
  7. Chase, H. S., and Al-Awqati, Q., 1981, Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. Role of sodium-calcium exchange in the basolateral membrane, J. Gen. Physiol., 77:693.Google Scholar
  8. Chase, H. S., and Al-Awqati, Q., 1982, Submicromolar calcium regulates Na permeability of luminal membrane vesicles from toad bladder as measured by flow quench method, Fed. Proc. 41:1350.Google Scholar
  9. Cuthbert, A. W., 1976, Importance of guanidinium groups for blocking sodium channels in epithelia, Mol. Pharmacol., 12:945.PubMedGoogle Scholar
  10. Cuthbert, A. W., and Shura, W. K., 1974, Binding of amiloride to sodium channels in frog skin, Mol. Pharmacol., 10:880.Google Scholar
  11. Davis, W. L., Goodman, D. B. P., Martin, J. H., Mathews, J. L., and Rasmussen, H., 1974, Vasopressin-induced changes in the toad urinary bladder epithelial surface, J. Cell Biol., 61:544.PubMedCrossRefGoogle Scholar
  12. Dick, H. J., and Lindemann, B., 1975, Saturation of Na-current into frog skin epithelium abolished by PCMPS, Pflügers Arch., 355:R72.Google Scholar
  13. Fisher, R. S., and Helman, S. I., 1981, Influence of basolateral (K)i on the electrical parameters of the cells of isolated epithelia of frog skin, Biophysical J., 33:41a.Google Scholar
  14. Frömter, E., Higgins, J. T., and Gebier, B., 1981, Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane, in: “Ion Transport by Epithelia,”. S. G. Schultz, ed., Raven Press, New York.Google Scholar
  15. Fuchs, W., Hviid Larsen, E., and Lindemann, B., 1977, Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin, J. Physiol., 267:137.PubMedGoogle Scholar
  16. Garty, H., and Edelman, I. S., 1983, Amiloride-sensitive trypsinization of apical sodium channels: Analysis of hormonal regulation of sodium transport in toad bladder, J. Gen. Physiol., 81:785.PubMedCrossRefGoogle Scholar
  17. Garty, H., Edelman, I. S., and Lindemann, B., 1983, Metaboli regulation of apical sodium permeability in toad bladder in the presence and absence of aldosterone, J. Membrane Biol., 74:15.CrossRefGoogle Scholar
  18. Garty, H. and Lindemann, B., 1984, Feedback inhibition of sodium uptake in K-depolarized toad urinary bladders, J. Membrane Biol., submitted.Google Scholar
  19. Grinstein, S., and Erlij, D., 1978, Intracellular calcium and the regulation of sodium transport in the frog skin, Proc. R. Soc. Lond. B. 202:353.PubMedCrossRefGoogle Scholar
  20. Harms, V., and Fanestil, D. D., 1977, Functions of apical membrane of toad urinary bladder: effects of membrane impermeant reagents, Am. J. Physiol., 233:F607.PubMedGoogle Scholar
  21. Helman, S. I., Cox, T. C., and Van Driessche, W., 1981, Changes of Na channel number at the apical membrane of frog skin caused by indomethacine and ADH/theophylline, Abstracts VII International Biophysics Congress, Mexico, p. 184.Google Scholar
  22. Hoshiko, T., and Van Driessche, W., 1981, Triamterene-induced sodium current fluctuations in frog skin, Arch. Int. Physiol. Biochem., 89:58.Google Scholar
  23. Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of the frog skin potential, Acta Physiol. Scand., 42:298.PubMedCrossRefGoogle Scholar
  24. Law, P. Y., and Edelman, I. S., 1978, Induction of citrate synthase by aldosterone in the rat kidney, J. Membrane Biol., 41:41.CrossRefGoogle Scholar
  25. Leblanc, G., and Morel, F., 1975, Na and K movements across the membranes of frog skin epithelia associated with transient current changes, Pflügers Arch., 358:159.PubMedCrossRefGoogle Scholar
  26. Lewis, S. A. and de Moura, J. L. C., 1982, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium, Nature, 197:685.CrossRefGoogle Scholar
  27. Li, J. H.-Y., and Lindemann, B., 1982, Movement of Na and Li across the apical membrane of frog skin, in: “Basic Mechanisms in the Action of. Lithium,”. H. M. Emrich, J. B. Aldenhoff and H. D. Lux, ed., Excerpta Medica, Amsterdam.Google Scholar
  28. Li, J. H.-Y., and Lindemann, B., 1983a, Competitive blocking of epithelial Na channels by organic cations: the relationship between macroscopic and microscopic inhibition constants, J. Membrane Biol.,76:235.CrossRefGoogle Scholar
  29. Li, J. H.-Y., and Lindemann, B., 1983b, Chemical stimulation of Na Transport through amiloride-blockable channels of frog skin epithelium, J. Membrane Biol.,75:179.CrossRefGoogle Scholar
  30. Li, J. H.-Y., Cragoe, Jr., E. J., and Lindemann, B., 1984, Structure activity relationship of amiloride analogues, J. Membrane Biol., submitted.Google Scholar
  31. Li, J. H.-Y, Palmer, L.G., Edelman, I. S. and Lindemann, B., 1979, Effect of ADH on Na channel parameters in toad urinary bladder, Pflügers Arch., 382:R13.Google Scholar
  32. Li, J. H.-Y., Palmer, L. G., Edelman, I. S., Lindemann, B., 1982. The role of Na-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone, J. Membrane Biol., 64:77.CrossRefGoogle Scholar
  33. Lindemann, B., and Gebhardt, U., 1973, Delayed changes of Na-permeability in response to steps of (Na)0 at the outer surface of frog skin and toad bladder, in: “Transport mechanisms in epithelia,” H. H. Ussing and N. A. Thorn, Munksgaard, Copenhagen.Google Scholar
  34. Lindemann, B., 1980, The beginning of fluctuation analysis of epithelial ion transport, J. Membrane Biol., 54:1.CrossRefGoogle Scholar
  35. Lindemann, B., 1977, A modifier-site model for passive Na transport into frog skin epithelium, in: “Intestinal Permeation,” M. Kramer and F. Lauterbach, ed., Excerpta Medica, Amsterdam.Google Scholar
  36. Lindemann, B., and DeFelice, L. J., 1981, On the use of general network functions in the evaluation of noise spectra obtained from epithelia, in: “Ion Transport by Epithelia,” S.G. Schultz, ed., Raven Press, New York.Google Scholar
  37. Lindemann, B., and Van Driessche, W., 1977, Sodium specific membrane channels of frog skin are pores: current fluctuations reveal high turnover, Science, 195:292.PubMedCrossRefGoogle Scholar
  38. Lindemann, B., and Van Driessche, W., 1978, The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin, in: “Membrane Transport Processes,” Vol. 1, J. F. Hoffman, ed., Raven Press, New York.Google Scholar
  39. Machlup, S., and Hoshiko, T., 1982, Sodium and amiloride competition in apical membrane channels: a 3-state model for noise, Biophysical J., 37:281a.Google Scholar
  40. MacRobbie, E. A. C., and Ussing, H. H., 1961, Osmotic behavior of the epithelial cells of frog skin, Acta Physiol. Scand., 53:348.PubMedCrossRefGoogle Scholar
  41. Morel, F., and Leblanc, G., 1975, Transient current changes and Na compartmentalization in frog skin epithelium, Pflügers Arch., 358:135.PubMedCrossRefGoogle Scholar
  42. Nelson, D. J., Ehrenfeld, J., and Lindemann, B., 1978, Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 M KCl, J. Membrane Biol., 40:91.CrossRefGoogle Scholar
  43. Orloff, J., and Handler, J., 1967, The role of adenosine 3, ‘5’-phosphate in the action of antidiuretic hormone, Am. J. Med., 42:757.PubMedCrossRefGoogle Scholar
  44. Palmer, L. G., 1982a, Na transport and flux ratio through apical Na+ channels in toad bladder, Nature, 297:688.CrossRefGoogle Scholar
  45. Palmer, L. G., 1982b, Ion selectivity of the apical membrane Na channel in the toad urinary bladder, J. Membrane Biol., 67:91.CrossRefGoogle Scholar
  46. Palmer, L. G., Edelman, I. S., and Lindemann, B., 1981, Current-voltage analysis of apical Na transport in toad urinary bladder: effects of inhibitors of transport and metabolism, J. Membrane Biol., 57:59.CrossRefGoogle Scholar
  47. Rawlins, F., Mateu, L., Fragachan, F., and Whittembury, G., 1970, Isolated toad skin epithelium: transport characteristics, Pflügers Arch., 316:64.PubMedCrossRefGoogle Scholar
  48. Rick, R., Dorge, A., and Nagel, W., 1975, Influx and efflux of sodium at the outer surface of frog skin, J. Membrane Biol., 22:183.CrossRefGoogle Scholar
  49. Spinelli, F., Gross, A., and de Sousa, R. C., 1975, The hydrosmotic effect of vasopressin: a scanning electron microscope study, J. Membrane Biol., 23:139.CrossRefGoogle Scholar
  50. Stetson, D. L., Lewis, S. A., and Wade, J. B., 1981, ADH-induced increase in transepithelial capacitance in toad bladder, Biophysical J., 33:43a.Google Scholar
  51. Sudou, K., and Hoshi, T., 1977, Mode of action of amiloride in toad urinary bladder. An electrophysiological study of the drug action on sodium permeability of the mucosal border, J. Membrane Biol., 32:115.CrossRefGoogle Scholar
  52. Taylor, A., and Windhager, E. E., 1979, Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport, Am. J. Physiol., 236:F505.PubMedGoogle Scholar
  53. Thomas, S. R., Suzuki, Y., Thompson, S. M., and Schultz, S. G., 1983, Electrophysiology of necturus urinary bladder: I. ‘Instantaneous’ current-voltage relations in the presence of varying mucosal sodium concentrations, J. Membrane Biol., 73:157.CrossRefGoogle Scholar
  54. Thompson, S. M., Suzuki, Y., and Schultz, S. G., 1982, The electrophysiology of rabbit descending colon. I. ‘Instantaneous’ transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism, J. Membrane Biol., 66:41.CrossRefGoogle Scholar
  55. Ussing, H. H., 1949, The active ion transport through the isolated frog skin in the light of tracer studies, Acta Physiol. Scand., 17:1.PubMedCrossRefGoogle Scholar
  56. Van Driessche, W., and Borghgraef, R., 1975, Noise generated during ion transport across frog skin, Arch. Int. Physiol. Biochim., 83:140.Google Scholar
  57. Van Driessche, W., and Goegelein, H., 1980, Attenuation of current and voltage noise signals recorded from epithelia, J. Theor. Biol., 86:629.PubMedCrossRefGoogle Scholar
  58. Van Driessche, W., and Lindemann, B., 1978, Low-noise amplification of voltage and current fluctuations arising in epithelia, Rev. Sci. Instrum., 49:52.PubMedCrossRefGoogle Scholar
  59. Van Driessche, W., and Lindemann, B., 1979, Concentration-dependence of currents through single sodium-selective pores in frog skin, Nature, 282:519.PubMedCrossRefGoogle Scholar
  60. Wade, J. B., Stetson, D. L., and Lewis, A. L., 1981, ADH action: evidence for a membrane shutttle mechanism, Ann. N.Y. Acad. Sci., 372:106.PubMedCrossRefGoogle Scholar
  61. Walton, K G., DeLorenzo, R. J., Curran, P. F., and Greengard, P., 1975, Regulation of protein phosphorylation in sodium transport in toad bladder, J. Gen. Physiol., 65:153.PubMedCrossRefGoogle Scholar
  62. Warncke, J., and Lindemann, B., 1980, Effect of ADH on the capacitance of apical epithelial membranes, Adv. Physiol. Sci., 3:129.Google Scholar
  63. Zeiske, W., and Lindemann, B., 1974, Chemical stimulation of Na current through the outer surface of frog skin epithelium, Biochem. Biophys. Acta, 352:323.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Bernd Lindemann
    • 1
  • Jack H.-Y. Li
    • 1
  1. 1.2nd Department of PhysiologyUniversity of the SaarlandHomburg/SaarGermany

Personalised recommendations