Lithographic Materials

  • Joachim Bargon
Part of the The IBM Research Symposia Series book series (IRSS)


Photosensitive. coatings, the workhorses of modern microelectronic technology, were originally developed for application in planar printing technology. From these both positive and negative photoresists have found their way into semiconductor manufacturing lines, originally because of their high resolution capability. From a chemical point of view, many different resist systems exist, but very few have found practical application. The dominating negative resists are based upon cyclized rubber as a host matrix containing a photosensitive crosslinking catalyst. The chief positive photoresists consist of a phenolic host resin which is photosensitized via an admixed dissolution inhibitor of the naphthoquinone diazide type. Their chemistry is closely related to the old fashioned blueprint copying process. Photoresists of this type have contributed significantly to the development of novel semiconductor processing concepts. They have survived the change over from wet chemistry etchants to dry plasma etching, and from visible light exposure to UV or electron beam lithography. More specialized resist systems have since been identified but the traditional performers impress by their universal applicability. Lithographic techniques have become very sophisticated, and accordingly many new lithographic materials such as multilayer resists, dual exposure resists, photosensitive insulators (polyimides), inorganic resists and dry developable systems have been added to the rather impressive menu of the modern microelectronic technology.


Plasma Etching Negative Photoresist Positive Photoresist Novolac Resin Polyamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Senefelder, “Vollständiges Lehrbuch der Steindruckerey,” Karl Thienemann, Munich and Karl Gerold, Vienna (1818), p. 137.Google Scholar
  2. 2.
    H. W. Vollmann, Angew. Chem., Int. Ed. Engl. 19, 99–110 (1980), and references therein.Google Scholar
  3. 3.
    a) J. Kosar, “Light Sensitive Systems,” Wiley, New York (1965);Google Scholar
  4. b) K. I. Jacobensen and R. E. Jackson, in “Imaging Systems,” Focal Press, London (1976), p. 173–222;Google Scholar
  5. c) P. Ziegler, Polygraph 32, 1102–1600 (1979).Google Scholar
  6. 4.
    O. Siis, Justus Liebigs Ann. Chem. 556, 65 (1944).CrossRefGoogle Scholar
  7. 5.
    M. J. Bowden and L. F. Thompson, Solid State Technol. 72–82 (May 1979).Google Scholar
  8. 6.
    M. J. Bowden, L. F. Thompson, S. R. Fahrenholtz and E. M. Doerris, J. Electrochem. Soc. 128, 1304–1313 (1981).CrossRefGoogle Scholar
  9. 7.
    J. K. Hasson and H. G. Sarkary, Solid State Technol. 49–54 (May 1982).Google Scholar
  10. 8.
    D. Seitzer, this volume.Google Scholar
  11. 9.
    a) E. D. Feit, M. E. Wurtz and G. W. Kammerlott J. Vac. Sci. Technol. 15, 944 (1978);CrossRefGoogle Scholar
  12. b) R. D. Heidenreich and G. W. Kammerlott Proceedings of the 4th Photopolym. Conf., Soc. Plast. Eng, Ellenville, New York (1976), 94.Google Scholar
  13. 10.
    A. C. Ouano, Polym. Eng. and Sci. 18, 306–313 (1978).Google Scholar
  14. 11.
    I. Haller, M. Hatzakis and R. Srinivasan, IBM J. Res. Del,. 12, 251–256 (1968).Google Scholar
  15. 12.
    E. Kay, this volume.Google Scholar
  16. 13.
    D. G. Borden, Proc. Reg. Techn. Conf., Soc. Plast. Eng., Mid Hudson Sect., Ellenville, New York (1973), pp 10–19, and references therein.Google Scholar
  17. L. A. Pederson, J. Electrochem. Soc. 129, 205 (1982);Google Scholar
  18. G. N. Taylor and T. M. Wolf, ibid. 127, 2665–2674 (1980).Google Scholar
  19. 15.
    B. Broyde, J. Electrochem. Soc. 117, 1555–1556 (1970).CrossRefGoogle Scholar
  20. 16.
    C. M. Melliar-Smith and J. Mogab, in: “Thin Film Processes,” J. C. Vossens and W. Kern, eds., Chapter V - 2, Academic Press, New York (1978).Google Scholar
  21. 17.
    a) T. S. Chang, D. F. Kyser and C. H. Ting, IEEE Trans. Elec. Del,. ED28, 1295–1300 (1981);Google Scholar
  22. b) W. Oldham, S. Handgaonkart, A. Neureuther and M. O’Toole, ibid ED26, 717 (1979)Google Scholar
  23. 18.
    a) M. S. Dinabury, “Photosensitive Diazo Compounds,” Focal Press, New York (1964);Google Scholar
  24. b) W. S. DeForest, “Photoresist Materials and Processes,” McGraw-Hill Book Co., Inc., New York (1975);Google Scholar
  25. c) L. F. Thompson and R. E. Kerwin, Ann. Res. of Mat. Sci. 6, 267 (1976);CrossRefGoogle Scholar
  26. d) E. D. Feit, “UV Curing: Science and Technology,” ACS Symposium Series 151, S. P. Pappas, ed., Pub. Technology Marketing (1978);Google Scholar
  27. e) R. K. Watts, in “Very Large Scale Integration, VLSI,” G. Ecker, W. Engl and L. B. Felsen, eds., Springer-Verlag, Berlin, Heidelberg, New York (1980), pp. 42–86.Google Scholar
  28. 19.
    L. A. Kazitsyna, B. S. Kikot and A. V. Upadysheva, Russian Chem. Rev. 35, 388 (1966).CrossRefGoogle Scholar
  29. 20.
    L. C. Anderson and M. J. Roedel, J. Am. Chem. Soc. 67, 955 (1945).CrossRefGoogle Scholar
  30. 21.
    G. Meloy, “The Structure of Diazo Ketones,” Ph.D. Thesis, University of Cincinnati (1965).Google Scholar
  31. 22.
    F. H. Dill and J. M. Shaw, IBM J. Res. Dey. 21, 210–218 (1977).CrossRefGoogle Scholar
  32. 23.
    J. M. Shaw, MJ. A. Frisch and F. H. Dill, IBM J. Res. Del,. 21, 219–224 (1977).Google Scholar
  33. 24.
    a) O. Süs, H. Stephen and R. Dietrich, Liebigs Ann. Chem. 617, 20 (1958);CrossRefGoogle Scholar
  34. b) O. Süs, J. Munder and H. Stephen, Angew. Chem. 74, 985 (1962).CrossRefGoogle Scholar
  35. 25.
    H. A. Levine, Polymer Preprints, Division of Polymer Chemistry, American Chemical Society, Washington, DC, Vol. 19, 1 (1969).Google Scholar
  36. 26.
    P. Yates and E. W. Robb, J. Am. Chem. Soc. 79, 5760 (1957).CrossRefGoogle Scholar
  37. Applicaton,“ E. D. Feit and C. Wilkins, Jr., eds., ACS Symposium Series 184, 1–17 (1982).Google Scholar
  38. 112.
    a) A. R. Schultz, J. Polym. Sci. 35, 369 (1959);Google Scholar
  39. b) H. Hiraoka, IBM J. Res. Dey. 1977,121, and references therein.Google Scholar
  40. 113.
    J. G. Dillard, Chem. Rev. 73, 589 (1973).Google Scholar
  41. 114.
    J. R. Brown and J. H. O’Donnell, Macromolecules 5, 109 (1972).CrossRefGoogle Scholar
  42. 115.
    a) L. F. Thompson and M. J. Bowden, J. Electrochem. Soc. 120, 1722–1726 (1973);CrossRefGoogle Scholar
  43. b) L. Stillwagon, in. Stillwagon, in “Polymer Materials for Electronic Applications,” E. D. Feit and C. Wilkins, Jr., eds., ACS Symposium Series 184, pp. 19–27 (1982);Google Scholar
  44. c) H. Stillwagon, Organic Coatings and Plastics Preprints 43, 236–242 (1980);Google Scholar
  45. d) T. Bowmer and J. O’Donnell, J. Polym. Sci., Polym. Chem. Ed. 19, 45 (1981);Google Scholar
  46. e) T. Bowmer, J. O’Donnel and P. Wells, Makromol. Chem. Rapid Comm. 1, 1 (1980);CrossRefGoogle Scholar
  47. f) M. J. Bowden, L. F. Thompson, S. R. Fahrenholtz and F. M. Doerris, J. Electrochem. Soc. 128, 1304 (1981).CrossRefGoogle Scholar
  48. 116.
    J. Bargon and H. Hiraoka, IBM Techn. Disci. Bull. 19, 3208 (1977).Google Scholar
  49. 117.
    J. Bargon, H. Hiraoka and L. W. Welsh, Jr., ibid. 19, 3207 (1977).Google Scholar
  50. 118.
    a) E. D. Feit and L. E. Stillwagon, Soc. Plast. Eng., Mid Hudson Sect., Reg. Tech. Conf., Ellenville, New York, Oct. 1979, p. 68;Google Scholar
  51. b) H. Shiraishi, Y. Taniguchi, S. Horigone and S. Nonogaki, ibid. p. 56.Google Scholar
  52. 119.
    J. Bargon, H. Hiraoka and L. W. Welsh, Jr., U.S. Patent 4,389,482 (1983) to IBM.Google Scholar
  53. 120.
    T. D. Berker and S. E. Bernacki, IEEE Trans. Electr. Dey. Lett. EDL-2, 281 (1981).Google Scholar
  54. 121.
    a) M. Hatzakis, Solid State Technol. 24, 74–80 (1981);Google Scholar
  55. b) M. Hatzakis, J. Paraszczak and J. Shaw, Proc. Int’l Conf. Microlithogr. (1981), p. 386.Google Scholar
  56. 122.
    a) B. J. Lin, “Development in Semiconductor Microlithography,” SPIE (1979), pp. 114–121;Google Scholar
  57. b) B. J. Lin and T. H. P. Chiang, J. Vac. Sci. Technol. 16, 1669–1671 (1979).CrossRefGoogle Scholar
  58. a) W. A. Keulgen, Encyclopedia Polymer Science and Technology 10, 1–73 (1976);Google Scholar
  59. b) A. Knop and W. Scheib, “Chemistry and Application of Phenolic Resins,” Springer-Verlag, Berlin, Heidelberg, New York (1979).Google Scholar
  60. 43.
    M. Koebner, Angew. Chem. 18, 251–256 (1933).CrossRefGoogle Scholar
  61. 44.
    a) H. Kämmer and W. Rausch, Makromol. Chem. 18/19, 9 (1956), and 24, 152 (1957);Google Scholar
  62. b) H. Kämmer and M. Gropmann, Chem. Ber. 86, 1492 (1953);CrossRefGoogle Scholar
  63. c) H. Kämmer, Angew. Chem. 70, 316 (1958).Google Scholar
  64. 45.
    R. F. Hunter, R. A. Morton and A. T. Carpenter, J. Chem. Soc. 441 (1950).Google Scholar
  65. 46.
    E. Gipstein, A. C. Ouano and T. Tompkins, J. Electrochem. Soc. 129, 201–205 (1982).CrossRefGoogle Scholar
  66. 47.
    G. P. Gardini, Univ. of Parma, Italy, private communication.Google Scholar
  67. 48.
    P. N. King, R. H. Mitchell and A. R. Westwood, J. Appl. Polym. Sci. 18, 1117 (1974).CrossRefGoogle Scholar
  68. 49.
    a) J. C. Woodbery, H. P. Higginbottom and H. M. Aulbertson, J. Polym. Sci. 3, 1079 (1975);Google Scholar
  69. b) L. Pospisil and M. Nauratil, Int. Polym. Sci. and Technol. 6, 5 (1979), T/79 and 6, 649 (1979), T42.Google Scholar
  70. 50.
    U.S. Patent 3549369, IBM Corporation (December 22, 1970 ).Google Scholar
  71. 51.
    H. Hiraoka and J. Pacansky, J. Electrochem. Soc. 128, 2645–47 (1981), and IBM Techn. Disci. Bull. 24, 1468 (1981).Google Scholar
  72. 52.
    W. F. Cordes, paper presented at the SPIE Microlithography Technology for the Mid-1980’s Seminar, Santa Clara, California, March 31 and April 1, 1982.Google Scholar
  73. 53.
    S. C. Stinson, Chem. and Eng. News 61, August 8, 7–12 (1983).Google Scholar
  74. 54.
    a) S. A. MacDonald, R. D. Miller, C. G. Willson, to be published;Google Scholar
  75. b) S. A. MacDonald, R. D. Miller, C. G. Willson, G. M. Feinberg, R. T. Gleason, R. M. Halverson, M. W. Maclntyre and M. W. Motsiff, Kodak Microelectronics Seminar, Interface 83, San Diego, California, October 1982.Google Scholar
  76. K. G. Clarke, in Negative Photoresists, “Non-Silver Photographic Processes,” R. J. Cox, ed., Academic Press, London-New York (1975), pp. 249–273.Google Scholar
  77. 56.
    W. Kornfeld, “Photoresist Technology Improvements,” Contract No. AF33 (615)-1430, Project No. 4460, Task 446002, May (1966).Google Scholar
  78. 57.
    M. Harita, M. Ishikawa, K. Harada and T. Tsunoda, Polym. Eng. and Sci. 17, 372 (1977).CrossRefGoogle Scholar
  79. 58.
    J. J. Sagura and J. A. Van Allen, U.S. Patent 2,940, 853 (1960).Google Scholar
  80. 59.
    R. F. M. Thornley and T. Sun, J. Electrochem. Soc. 112, 11, 1151 (1965).CrossRefGoogle Scholar
  81. 60.
    A. Reiser, H. M. Wagner, R. Marley and G. Gowes, Trans. Faraday Soc. 63, 2403 (1967).CrossRefGoogle Scholar
  82. 61.
    H. T. Thomas, Proc. Kodak Microelectron Seminar 89, 89–92 (1974).Google Scholar
  83. 62.
    K. Neisius and H. J. Merrem, J. Electronic Materials 11 (4), 761 (1982).CrossRefGoogle Scholar
  84. 63.
    H. Zügel, this volume.Google Scholar
  85. 64.
    a) R. Rubner and E. Kuhn, ACS Error! Hyperlink reference not valid.. Coatings and Plast. Preprints 37 (2), 118 (1977);Google Scholar
  86. b) R. Rubner, Siemens Forsch. und Entwickl. Ber. 5, 92–97 (1976);Google Scholar
  87. c) R. Rubner, W. Bartel and G. Bald, ibid. 5, 235–239 (1976);Google Scholar
  88. d) W. Kleeberg, R. Rubner and E. Kühn, German Patent 2, 130, 904 (1974);Google Scholar
  89. e) R. Rubner, H. Ahne, E. Kühn and G. Koldozieji, Photograph. Sci. Eng. 23 (5), 303 (1979).Google Scholar
  90. 65.
    a) Selectilux HTR-2, Preliminary Data Sheet, EM Chemicals, 5 Skyline Drive, Hawthorne, New York 10532;Google Scholar
  91. b) H. J. Merrem, R. King and H. Härtner, “New Developments in Photosensitive Polyimides,” E. Merck, Res. and Dev. Dept., Frankfurter Str. 250, D61 Darmstadt-1, West Germany.Google Scholar
  92. 66.
    J. C. Dubois, A. Eranian and E. Datamandi, paper presented at 8th Intl. Conf. on Electron and Ion Beam Sci. and Technol., Electrochem. Soc. Meeting, May 21–26, 1978, Seattle.Google Scholar
  93. 67.
    E. D. Feit, “UV Curing: Science and Technology,” S. P. Pappas, ed., Pub. Techn. Marketing (1978).Google Scholar
  94. 68.
    B. J. Lin, J. Vac. Sci. Technol. 12, 1317–1320 (1975).Google Scholar
  95. 69.
    K. Jain, “Sources for UV Lithography,” IBM San Jose Research Laboratory, Report RJ3697 (1982).Google Scholar
  96. 70.
    K. Jain, C. S. Willson, S. Rice, L. Pedersen and B. J. Lin, IBM Research Laboratory, Report RJ3737 (1982), and references therein, submitted to Polym. Eng. and Sci.Google Scholar
  97. 71.
    W. M. Moreau and P. R. Schmidt, 138th Electrochem. Soc. Meeting, Extended Abstracts, No. 178 (1970).Google Scholar
  98. 72.
    F. W. Dill, W. P. Hornberger, P. S. Hang and J. M. Shaw, IEEE Trans. Electr. Del,. ED22, 445 (1975).Google Scholar
  99. 73.
    a) E. Reichmanis and C. W. Wilkins, Jr., “Polymer Materials for Electronic Applications,” ACS Symposium Series 184, Washington, DC (1982), pp. 29–43;Google Scholar
  100. b) E. Reichmanis and C. W. Walkins, Jr., Organic Coatings and Plastics Chem. Preprints, 180th Meeting Am. Chem. Soc. 43, 243–251 (1980).Google Scholar
  101. 74.
    H. Hiraoka, W. L. Welsh, Jr. and J. Bargon, IBM Research Laboratory, Report RJ3942 (1982), and J. Vac. Sci. Technol. B1, 1062–1965 (1983).Google Scholar
  102. 75.
    a) J. R. Callum and C. K. Schoff, Trans. Faraday Soc. 67, 2372–2388 (1971);CrossRefGoogle Scholar
  103. b) R. B. Fox, Prog. Polym. Sci., A.-D. Jenkins, ed., Pergamon Press, 1, Chapter II (1967).Google Scholar
  104. 76.
    N. Grassie, Symposium on Macromol. Chem., Academiai Kiado, Budapest (1971), p. 725.Google Scholar
  105. 77.
    A. Levine, “Photopolymers, Principles, Process and Materials,” Soc. Plastics Eng., Tech. Papers (1973), p. 106.Google Scholar
  106. 78.
    M. Tsuda, S. Oikawa, Y. Nakamura, H. Nagata, A. Yokata, H. Nakane, T. Tsumori, Y. Nakane and T. Mifune, Photographic Science and Eng. 23, 290–296 (1979).Google Scholar
  107. 79.
    L. F. Thompson and M. J. Bowden, J. Electrochem. Soc. 120, 1722–1726 (1973).CrossRefGoogle Scholar
  108. 80.
    T. Bowmer and J. O’Donnell, J. Polym. Sci., Polym. Chem. Ed. 19, 45 (1981).Google Scholar
  109. T. Bowmer, J. O’Donnell and P. Wells, Makromol Chem., Rapid Comm. 1, 1 (1980).Google Scholar
  110. 82.
    J. Pacansky, R. Kroeker, E. Gipstein and A. Gutierrez, IBM Research Laboratory, Report RJ3384 (1982).Google Scholar
  111. 83.
    E. Gipstein, A. C. Ouano and T. Tompkins, J. Electrochem. Soc. 129, 201–204 (1982).CrossRefGoogle Scholar
  112. 84.
    B. D. Grant, N. J. Clecak, R. J. Twieg and C. G. Willson, IEEE Trans. Electr. Del,. ED22, 1300–1305 (1981).Google Scholar
  113. 85.
    A. C. Ouano, Polym. Eng. Sci. 18, 306 (1978).Google Scholar
  114. 86.
    a) T. Iwayanagi, T. Kohashi, S. Nonogaki, T. Matsuzawa, K. Douta and H. Yanazawa, IEEE Trans. Electr. Del,. ED28, 1306–1310 (1981);Google Scholar
  115. b) T. Matsuzawa and H. Tomjoka, ibid. ED28, 1285–1288 (1981).Google Scholar
  116. 87.
    M. Tsuda, S. Oikawa, Y. Nakamura, H. Nagara, A. Yakota, H. Nakane, T. Tsumori, Y. Nakane and T. Mifune, paper presented at Int. Symp. on Adv. in Photopolym. Sys., Washington, DC (1978), paper summaries, p. 77.Google Scholar
  117. 88.
    H. Hiraoka, and L. Welsh, Jr., IBM Research Laboratory, Report RJ3379 (1982).Google Scholar
  118. 89.
    H. Hiraoka and J. Pacansky, J. Electrochem. Soc. 128, 2645–47 (1981).CrossRefGoogle Scholar
  119. 90.
    H. Hiraoka and J. Pacansky, J. Vac. Sci. Technol. 19, 1132 (1981).CrossRefGoogle Scholar
  120. 91.
    H. Hiraoka and J. Pacansky, IBM Techn. r Discl. Bull. 24, 1468 (1981).Google Scholar
  121. 92.
    P. van Pelt, Proc. Soc. Photo-Opt. Instr. Eng. 275, 150 (1981).Google Scholar
  122. 93.
    R. Allen, P. Foster and Y. T. Yen, J. Electrochem. Soc. 129, 1378–81 (1982).CrossRefGoogle Scholar
  123. 94.
    R. F. Leonard and W. F. Cordes, SPIE Opt. Microlith. Technology Symp., Santa Clara, California (1982).Google Scholar
  124. 95.
    R. F. M. Thornley and T. Sun, J. Electrochem. Soc. 112, 1151 (1965).CrossRefGoogle Scholar
  125. 96.
    D. O’Sullivan, P. B. Price, K. Kinoshita and C. G. Willson, J. Electrochem. Soc. 129, 811–813 (1982).CrossRefGoogle Scholar
  126. I. Haller, M. Hatzakis and R. Srinivasan, IBM J. Res. Dev. 12, 251 (1968).CrossRefGoogle Scholar
  127. 98.
    H. Harada, O.Kogure and K. Murase, IEEE Trans. Electr. Dev. ED29, 518–524 (1982).Google Scholar
  128. 99.
    P. D. Davidse, Vacuum 17, 139 (1967).CrossRefGoogle Scholar
  129. 100.
    E. Kay, this volume, and references therein.Google Scholar
  130. 101.
    W. Kulcke, this volume and references therein.Google Scholar
  131. 102.
    a)B. Broyde, J. Electrochem. Soc. 117, 1555–1556 (1970);Google Scholar
  132. b) J. M. Shaw and M. Hatzakis, IEEE Trans. Electr. Dev. ED25, 425–430 (1978);Google Scholar
  133. c) H. Hiraoka and A. R. Gutierrez, J. Electrochem. Soc. 126, 860–865 (1979).CrossRefGoogle Scholar
  134. 103.
    J. Pacansky and H. Coufal, J. Am. Chem. Soc. 102, 410–412 (1980).CrossRefGoogle Scholar
  135. 104.
    H. Itoh and C. G. Willson, IBM Research Report, submitted to ACS Symposium Series, “Polymers in Electronics.”Google Scholar
  136. 105.
    R. Feder, I. Haller, M. Hatzakis, L. T. Romankiw and E. A. Spiller, IBM Research Center, Yorktown Heights, New York (1974), private communication.Google Scholar
  137. 106.
    L. Kevan and W. F. Libby, Advances Photochem. 2, 183 (1964).CrossRefGoogle Scholar
  138. 107.
    H. Hiraoka, J. Am. Chem. Soc. 95, 1664 (1973).CrossRefGoogle Scholar
  139. 108.
    A. D. McLean and M. Yoshimine, IBM Research Laboratory, San Jose, California, private communication.Google Scholar
  140. 109.
    a) J. Bargon, E. Gipstein and H. Hiraoka, U.S. Patent 3,964, 908 (1976);Google Scholar
  141. b) H. Hiraoka, E. Gipstein, J. Bargon and L. W. Welsh, Jr., J. Appl. Polym. Sci. 22, 3397 (1978).CrossRefGoogle Scholar
  142. 110.
    J. Bargon, E. Gipstein and H. Hiraoka, IBM Techn. Disc. Bull. 18, 2622 (1976).Google Scholar
  143. 111.
    a) E. D. Roberts, Applied Polym. Symp. No. 23, John Wiley and Sons, Inc., New York, (1974), pp. 87–97;Google Scholar
  144. b) E. D. Roberts, A. C. S. Coatings and Plastics Preprints 35(2), 281–286 (1975); ibid. 43, 231–241 (1980);Google Scholar
  145. c) E. D. Roberts, in “Polymer Materials for Electronic A. I. Paramonov, Yu M. Prokhotskii and R. D. Erlikh, Zh. Prikl. Spektrosk. 27, 473 (1977).Google Scholar
  146. 28.
    L. Wolff, Justus Lebigs Ann. Chem. 394, 25 (1912).Google Scholar
  147. 29.
    J. Pacansky and D. Johnson, J. Electrochem. Soc. 124, 862 (1977).CrossRefGoogle Scholar
  148. 30.
    J. Pacansky and J. R. Lyerla, IBM J. Res. Del,. 23, 42–55 (1979).Google Scholar
  149. 31.
    J. G. Calvert and J. N. Pitts, “Photochemistry,” John Wiley and Sons, New York (1967).Google Scholar
  150. 32.
    a) J. Bargon, K. Tanaka and Y. Yoshimine, in “Computational Methods in Chemistry,” J. Bargon, ed., Plenum, New York (1980), pp. 239–274;Google Scholar
  151. b) Y. Yoshimine and K. Tanaka, J. Am. Chem. Soc. (1980).Google Scholar
  152. 33.
    L. Wolff, Liebigs Ann. Chem. 325, 129 (1902); ibid. 333, 1 (1904).Google Scholar
  153. 34.
    G. Schroeder, Chem. Ber. 42, 2336 (1909); ibid. 49, 2697 (1916).Google Scholar
  154. 35.
    A. M. Trozzolo and S. R. Fahrenholtz, Abstracts of the 151st Meeting of the American Chemical Society (1966), K23.Google Scholar
  155. 36.
    A. Padwa and R. Layton, Tet. Lett. 2617 (1965).Google Scholar
  156. 37.
    K. P. Zeller, J. Chem. Soc. D, 317 (1975).Google Scholar
  157. 38.
    a) D. F. Jlten and R. J. Sutton, J. Electrochem. Soc., Solid State Sci. and Technol. 119, 539 (1972);Google Scholar
  158. b) D. F. Jlten, ibid. 119, 537 (1972).Google Scholar
  159. 39.
    a) J. M. Shaw and M. Hatzakis, IEEE Trans. Elec. Dey. ED25, 4 (1978).Google Scholar
  160. 40.
    a) S. Fujimori, J. Appl. Phys. 50, 615 (1975);CrossRefGoogle Scholar
  161. b) W. T. Tsang, Appl. Opt. 16, 1918 (1977).Google Scholar
  162. 41.
    a) A. C. Livanos, A. Katzir, J. B. Shellan and A. Yariv, Appl. Opt. 16, 1633 (1977);CrossRefGoogle Scholar
  163. b) S. Austin and F. T. Stone, ibid. 15, 1071 and 2126 (1976);Google Scholar
  164. c) R. A. Bartolini, ibid. 11, 1275 (1972), and 13, 129 (1974);Google Scholar
  165. d) M. S. Htoo, Photogr. Sci. Eng. 12, 169 (1968);Google Scholar
  166. e) F. J. Loprest and F. A. Fitzgerald, ibid. 15,. 260 (1971). Google Scholar
  167. T. Batchelder and C. Takemoto, Semiconductor Int’l (April 1982), pp. 213–220.Google Scholar
  168. 124.
    P. S. Burggraf, ibid. (June 1983), pp. 48–55.Google Scholar
  169. 125.
    J. Havas, Electrochem. Soc., Extended Abstracts 76–2, 743–744 (1976).Google Scholar
  170. 126.
    M. Gazard, J. C. Dubois and C. Duchesne, Appl. Polym. Symp. 23, 107–116 (1974).Google Scholar
  171. 127.
    E. D. Roberts, Philips Techn. Rev. 35, 41–52 (1975).Google Scholar
  172. 128.
    The polyisilicon top layer by virtue of its e-beam and deep UV sensitivity can function as a dual resist as well as in a Same Level Mixed Lithography approach.Google Scholar
  173. 129.
    W. R. Goodner, Proc. of Kodak Microelectronic Seminar (1979), pp. 51–59.Google Scholar
  174. 130.
    a) G. N. Taylor and T. M. Wolf, J. Electrochem. Soc. 127, 2665 (1980);CrossRefGoogle Scholar
  175. b) G. N. Taylor, T. M. Wolf and M. R. Goldrick, ibid. 128, 361–366 (1981).Google Scholar
  176. 131.
    M. S. Chang, J. Vac. Sci. Technol. 16, 1973–1976 (1979).Google Scholar
  177. 132.
    K. L. Tai, W. R. Sinclair, R. G. Vadimsky and J. M. Moran, ibid. 16, 1977–1979 (1979).Google Scholar
  178. 133.
    B. Griffing and P. West, Semiconductor Int. (June 1983), pp. 17–18.Google Scholar
  179. 134.
    G. L. Gaines, Jr., “Interfaces,” Interscience, New York (1966).Google Scholar
  180. 135.
    K. P. Blodgett and I. Langmuir, Phys. Rev. 51, 964 (1937).CrossRefGoogle Scholar
  181. 136.
    A. Barand, C. LeGressus, H. Okusumi and A. Mogami, 8th Int’1. Congress on Electron Microscopy, Canberra, J. W. Sanders and D. J. Goodehild, eds., Part 1 (1974), p. 682.Google Scholar
  182. 137.
    a) A. Barand C. Rosilio and A. Ruaudel-Teixier, Solid State Techol. (August 1979), pp. 120–124;Google Scholar
  183. b) A. Barand, C. Rosilio and A. Ruaudel-Teixier, J. Colloid. and Interface Sci. 62, 509 (1977).CrossRefGoogle Scholar
  184. 138.
    C. A. Brown and T. Wu, IBM Research Laboratory, San Jose, California, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joachim Bargon
    • 1
    • 2
  1. 1.IBM Research LaboratorySan JoseUSA
  2. 2.Institut für Physikalische ChemieUniversität BonnBonn-1West Germany

Personalised recommendations