Advertisement

Microlithography for VLSI and Beyond

  • A. N. Broers
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

The well known drive for smallness in integrated circuits stems from the potential for smaller devices to be faster, lower power and cheaper. Lithography is the most universal integrated circuit process and is of great influence in gating progress towards smallness, but other areas are of equal importance. They include device design, material deposition (epitaxial films, oxides, silicides, etc.), and development of processes for transferring resist structures into real devices (ion implantation, dry etching, metallization, etc.). Because these other areas are complex and numerous progress has been slower than it would have been had lithography alone been the gate. As a result, the smallest dimensions in production today (~1µ) are still within the capabilities of optical lithography. In addition, it appears optical lithography can be extended to dimensions of ~0.5µ, so it is likely to dominate for many years, and the resolution advantage of electron beam and X-ray methods will not be needed except in research and development. An exception to this is when fast turnaround is an asset such as in mask making and gate-array personalization. Here scanning electron beams are very valuable. They are also best for device research because, in addition to quick turn-around, they offer highest resolution (10 nm–20 nm) and best registration.

Keywords

Shaped Beam Optical Lithography Partial Coherence Refractive Lens Scanning Electron Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Tischer, “Electronics in Microelectronics,” W. A. Kaiser and W. E. Proebster, eds., North Holland, 1980.Google Scholar
  2. 2.
    B. J. Lin, “Microcircuit Engineering 81,” Swiss Federal Instit. Technol., Lausanne, Switzerland, 47 1981.Google Scholar
  3. 3.
    R. Hershel, SPIE Conference, Santa Clara, California, 1982.Google Scholar
  4. 4.
    M. C. King, “Principles of Optical Lithography,” Chapt. in VLSI Electronics Microstructure Sci., Vols. 1 and 2, ed. Einsbruch, Academic Press, 1981.Google Scholar
  5. 5.
    B. J. Lin, SPIE Proc. 174, 179.Google Scholar
  6. 6.
    K. L. Tai et al., J. Vac. Sci. Technol. 16, 1977 (1979).CrossRefGoogle Scholar
  7. 7.
    D. A. Markle, Solid State Tech. 17, 50 (1974).Google Scholar
  8. 8.
    J. J. Greed and D. A. Markle, SPIE Conference, Santa Clara, California, 1982.Google Scholar
  9. 9.
    A. Offner, Photogr. Sci. Eng. 23, 374 (1979).Google Scholar
  10. 10.
    K. Jain, C. G. Willson and B. J. Lin, IEEE Electron Device Lett. EDL-3, 53 (1982).Google Scholar
  11. 11.
    S. Wittekoek, Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press., Holland, 155, 1980.Google Scholar
  12. 12.
    J. Lauria et al., Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, Holland, 181, 1980.Google Scholar
  13. 13.
    G. Dubreoueq et al., Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, Holland, 191, 1980.Google Scholar
  14. 14.
    H. E. Mayer et al. Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, Holland, 191, 1980.Google Scholar
  15. 15.
    J. Dey et al., Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, Holland, 211, 1980.Google Scholar
  16. 16.
    J. S. Wilczynski, J. Vac. Sci. Technol. 16, 1929 (1979). 19. 178Google Scholar
  17. 17.
    D. L. Spears and H. I. Smith, Electron. Leu. 8 102 (1972).CrossRefGoogle Scholar
  18. 18.
    E. Spiller and R. Feder, Sci. Am. Nov. 1978.Google Scholar
  19. 19.
    G. N. Taylor and T. M. Wolf, Microcircuit Engineering 81, Swiss Federal Instit. Technol., Lausanne, Switzerland 381, 1981.Google Scholar
  20. 20.
    W. D. Grobman, IEDM Digest, IEEE, New York, p. 415, 1980.Google Scholar
  21. 21.
    E. Gronid et al., Microcircuit Engineering 81, Swiss Federal Instit. Technol., Lausanne, Switzerland, 122, 1981.Google Scholar
  22. 22.
    J. LeDuff et al., Microcircuit Engineering 81, Swiss Federal Instit. Technol., Lausanne Switzerland, 130, 1981.Google Scholar
  23. 23.
    E. Spiller and R. Feder, “X-Ray Lithography,” in H. J. Queisser, “X-Ray Optics,” Springer-Verlag, Berlin, 1977.Google Scholar
  24. 24.
    A. E. Gruen, Z. Naturforsch,12a, 89–95 (1957).Google Scholar
  25. 25.
    H. Bohlen et al., J. Vac. Sci. Technol. 16, 1889 (1979).CrossRefGoogle Scholar
  26. 26.
    R. Laibowitz et al., Appl. Phys. Lett. 35, 891 (1979).CrossRefGoogle Scholar
  27. 27.
    R. Voss et al., Appl. Phys. Lett. 37, 656 (1980).CrossRefGoogle Scholar
  28. 28.
    D. R. Herriott et al., IEEE Trans. Electron. Devices ED-22, 385 (1975).Google Scholar
  29. 29.
    S. Sano et al., Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, 950, 1981.Google Scholar
  30. 30.
    H. C. Pfeiffer, J. Vac. Sci. Technol. 15, 887 (1978).CrossRefGoogle Scholar
  31. 31.
    E. Goto, T. Soma and M. Idesawa, J. Vac. Sci. Technol. 15, 883 (1978).CrossRefGoogle Scholar
  32. 32.
    M. G. R. Thomson, R. J. Collier and D. R. Herriott, J. Vac. Sci. Technol. 15, 891 (1978).CrossRefGoogle Scholar
  33. 33.
    T. H. P. Chang et al., Proc. 75h Int. Conf. Electron and Ion Beam Sci. and Technol., R. Bakish, ed., Electrochem. Soc. Inc., Princeton, NJ, 97 (1974).Google Scholar
  34. 34.
    G. Varnell et al., J. Vac. Sci. Technol. 16, 1787 (1979).CrossRefGoogle Scholar
  35. 35.
    J. C. Eidson et al., J. Vac. Sci. Technol. 19, 932 (1981).CrossRefGoogle Scholar
  36. 36.
    F. H. Hohn et al., J. Appl. Phys. 53, 1283 (1982).CrossRefGoogle Scholar
  37. 37.
    R. D. Moore, J. Vac. Sci. Technol. 19, 950 (1981).CrossRefGoogle Scholar
  38. 38.
    A. N. Broers, J. Electrochem. Soc. 128, 166 (1981).CrossRefGoogle Scholar
  39. 39.
    T. H. P. Chang, J. Vac. Sci. Technol. 12, 127 (1975).Google Scholar
  40. 40.
    A. N. Broers et al., Appl. Phys. Lett. 29, 596 (1976).CrossRefGoogle Scholar
  41. 41.
    M. Isaacson and A. Muray, J. Vac. Sci. Technol. 19, 1117 (1981).CrossRefGoogle Scholar
  42. 42.
    T. M. Hall et al., J. Vac. Sci. Technol. 37, 656 (1980).Google Scholar
  43. 43.
    A. Wagner, Proc. SPIE Conf. Santa Barbara, California, 167 (1983).Google Scholar
  44. 44.
    G. R. Hanson and B. M. Siegel, J. Vac. Sci. Technol. 16, 1875 (1979).CrossRefGoogle Scholar
  45. 45.
    R. Clampitt et al., J. Vac. Sci. Technol. 12, 1208 (1975).CrossRefGoogle Scholar
  46. 46.
    V. E. Krohn and G. R. Ringo, Appl. Phys. Lett. 27, 479 (1975).CrossRefGoogle Scholar
  47. 47.
    R. L. Seliger et al., J. Vac. Sci. Technol. 16, 1610 (1979).CrossRefGoogle Scholar
  48. 48.
    K. Gamo et al., Microcircuit Engineering 80, R. P. Kramer, ed., Delft Univ. Press, Holland, 283 (1980).Google Scholar
  49. 49.
    D. B. Rensch et al. J. Vac. Sci. Technol. 16, 1897 (1979).CrossRefGoogle Scholar
  50. 50.
    J. A. McHugh, “Secondary Ion Spectrometry,” Capt. in “Methods of Surface Analysis,” S. Wolsky and A. Czanderna, ed., Elsevier Pub. Co., Amsterdam, 1975.Google Scholar
  51. 51.
    R. E. Tibbetts and J. S. Wilczynski, Proc. 1980 Int. Lens Design Conf., SPIE Vol. 237, R. E. Fischer, ed., SPIE Bellingham, Washington, DC, 321 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. N. Broers
    • 1
  1. 1.IBM General Technology DivisionEast FishkillUSA

Personalised recommendations