Advertisement

Electronic Transport in Semiconductor Materials

  • Hans Joachim Queisser
Part of the The IBM Research Symposia Series book series (IRSS)

Abstract

Recent developments in research and applications of electronic transport in semiconductors are reviewed. The possibility of achieving low carrier densities, the purity and perfection of single crystals, low effective carrier masses, and high dielectric constants have established semiconductors as exceedingly versatile in contrast to metals for understanding and utilizing electronic transport. The individual electron scattering mechanisms, which determine mobilities, can be separated and studied in detail. Ionizedimpurity scattering has become of renewed interest. Hot-carrier effects, being accessible in semiconductors, have recently found a new method of investigation by means of optical excitation. Carriers far from equilibrium, such as ballistic electrons, are studied in specially structured samples. High-resistivity semiconductors still present many problems, caused by compensation, by interplay of localized versus extended states, and by very long dielectric relaxation. Interfaces have captured much of the recent attention. Grain boundaries are significant for polycrystalline silicon, as used in integrated circuits or solar cells. The transport across such boundaries is governed by thermal activation over a potential produced by localized electronic states associated with the boundary. Quantum effects and quasi-two-dimensional transport give rise to novel features at semiconductor surfaces and interfaces. Quantization can be further enhanced by magnetic fields, this twofold quantization led to a new resistance standard based only on fundamental constants.

Keywords

Electronic Transport Carrier Density Semiconductor Material Landau Level Polycrystalline Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.H. Seeger, Semiconductor Physics, Springer Series in: “Solid State Sciences”, Vol. 40, Springer-Verlag, Heidelberg (1982).Google Scholar
  2. 2.
    B.R. Nag, “Theory of Electrical Transport in Semiconductors”, Pergamon, Oxford (1972).Google Scholar
  3. 3.
    Handbook of Semiconductors, Vol.I, “Band Theory and Transport Properties”, W. Paul, editor, North Holland, Amsterdam (1982).Google Scholar
  4. 4.
    D. Chattopadhyay and H.J. Queisser, Rev. Mod. Phys. 53: 745 (1981).CrossRefGoogle Scholar
  5. 5.
    W. Bludau, E. Wagner, and H.J. Queisser, Solid State Commun. l8: 861 (1976); for a review on photoexcitation, see R.G. Ulbrich, Solid-State Electronics 21: 51 (1978).Google Scholar
  6. 6.
    M.A. Paesler and H.J. Queisser, Phys. Rev. B17: 2625 (1978).CrossRefGoogle Scholar
  7. 7.
    D.E. Theodorou and H.J. Queisser, Phys. Rev. B19: 2092 (1979).CrossRefGoogle Scholar
  8. 8.
    H.L. Störmer, J. Phys. Soc. Jpn. 49, Suppl.A: 1013 (1980).Google Scholar
  9. 9.
    K. Ploog, Annu.Rev.Mater.Sci. 11: 171 (1981).CrossRefGoogle Scholar
  10. 10.
    E.M. Conwell, High Field Transport in Semiconductors, Solid State Phys. Suppl. 9, Academic Press, New York (1967).Google Scholar
  11. 11.
    Proceedings of the Hot-Electron-Conference 1977, Solid State Electronic 21, pp. 1 to 323 (1978).Google Scholar
  12. 12.
    Proceedings of Third Internat. Conference on Hot Carriers, 1981 in: J. de Physique 42, supp. 10 (1981).Google Scholar
  13. 13.
    C. Weisbuch, Ref.11, p.179; R.C.C. Leite, Ref. 11, p. 177.Google Scholar
  14. 14.
    J. Shaw, Ref. 12, p. C7–445.Google Scholar
  15. 15.
    K. Hess, Ref. 12, p. C7–3.Google Scholar
  16. 16.
    A historical review by C. Hilsum, Ref. 11, p. 5.Google Scholar
  17. 17.
    T. Ning, Solid-St.Electron. 21, 273 (1978).CrossRefGoogle Scholar
  18. 18.
    H. Kroemer, Ref. 11, p. 61.Google Scholar
  19. 19.
    S.J. Allen, Jr., D.C. Tsui, F. DeRosa, K.K. Thornber, and B.A. Wilson, Ref. 12, p. C7–369.Google Scholar
  20. 20.
    P.R. Smith, D.H. Auston, and W.M. Augustyniak, Appl. Phys. Lett. 39: 739 (1981).CrossRefGoogle Scholar
  21. 21.
    L. Eastman, in “Festkörperprobleme”, Vol. XXII, P. Grosse, editor; Vieweg, Wiesbaden (1982).Google Scholar
  22. 22.
    J.M. Whelan, J.D. Struthers, and J.A. Ditzenberger, Proc. Int. Conf. Semicond. Prague, p. 966 (1961).Google Scholar
  23. 23.
    See, for example, P.J. Dean, Czech. J. Physics 30: 272 (1980).Google Scholar
  24. 24.
    D.L. Rode, in “Semiconductors and Semimetals”, ed. by R.K. Willardson and A.C. Beer, Academic Press, New York, Vol. 10, chapter 1 (1975).Google Scholar
  25. 25.
    T. Kamiya and E. Wagner, J. Appl. Phys. 48: 1928 (1977).CrossRefGoogle Scholar
  26. 26.
    Proc. Int. Conf. Semi-Insulating Compounds, Evian (1982) to be published.Google Scholar
  27. 27.
    H.J. Queisser, J. Appl. Phys. 37: 2909 (1966).CrossRefGoogle Scholar
  28. 28.
    E.O. Göbel and W. Graudszus, Phys. Rev. Lett. 48: 1277 (1982).CrossRefGoogle Scholar
  29. 29.
    N.F. Mott, “Metal-Insulator-Transition”, Taylor & Francis, London (1974).Google Scholar
  30. 30.
    Electronic Transport in Amorphous Semiconductors is reviewed by P. Nagels in: Amorphous Semiconductors, ed. by M.H. Brodsky, “Topics in Applied Physics”, Vol.36, Springer, Heidelberg (1979), p. 113.Google Scholar
  31. 31.
    D.J. Thouless, Phys. Rep. 13C:93 (1974). A recent summary in “Anderson Localization”, ed. by Y. Nagaoka and H. Fukuyama, Springer Ser. in: Solid State Sciences, Vol. 40; Springer, Heidelberg (1982).Google Scholar
  32. 32.
    For a recent contribution concerning localization in semiconductors, see G.A. Thomas, Proc. 16th Int. Conf. Physics of Semic., M. Averous, ed., North Holland, Amsterdam ( 1982.Google Scholar
  33. 33.
    H.J. Queisser, in: “Solid State Devices”, 1972, P.N. Robson, editor, Inst. of Physics Series 15, London and Bristol, p. 145 (1973).Google Scholar
  34. 34.
    W. Van Roosbroeck and H.C. Casey, Jr., Phys. Rev. B5: 2154 (1972).CrossRefGoogle Scholar
  35. 35.
    H.J. Queisser, H.C. Casey, Jr., and W. van Roosbroeck, Phys. Rev. Lett. 26: 551 (1971).Google Scholar
  36. 36.
    J.-C. Manifacier and H.K. Henisch, J. Appl. Phys. 52: 5195 (1981).CrossRefGoogle Scholar
  37. 37.
    M. Ilegems and H.J. Queisser, Phys. Rev. B12: 1443 (1975)CrossRefGoogle Scholar
  38. 38.
    S. Roth and M. Peo, Colloid Polym. Sci. 259: 279 (1981)CrossRefGoogle Scholar
  39. 39.
    W. Shockley, “Electrons and Holes in Semiconductors”, D. van Nostrand, Princeton (1950).Google Scholar
  40. 40.
    H. Tews and C. An, J. Appl. Phys. 53: 5339 (1982).CrossRefGoogle Scholar
  41. 41.
    B. Authier; H. Fischer,in two articles in “Festkörperprobleme”, Vol. XVIII; J. Treusch, ed., Vieweg, Braunschweig (1978) describe polycrystalline Si with columnar structure and solar cells from this material, pp.1 and 19; also see ref.42.Google Scholar
  42. 42.
    Grain Boundaries in Semiconductors, ed. by H.J. Leamy, G.E. Pike, and C.H. Seager, North-Holland, New York (1982).Google Scholar
  43. 43.
    H.J. Queisser, J. Phys. Soc. Jpn. 18, suppl. III, 142 (1963); D. Redfield, Appl. Phys. Lett. 40: 163 (1982).Google Scholar
  44. 44.
    H.J. Queisser, J. Electrochem. Soc. 110: 52 (1963)CrossRefGoogle Scholar
  45. 45.
    J. Werner, W. Jantsch, and H.J. Queisser, Solid State Commun. 42: 415 (1982).CrossRefGoogle Scholar
  46. 46.
    H.J. Queisser “Festkörperprobleme”, Vol.XI; O. Madelung, editor, Vieweg, Braunschweig (1917), p.45; S. Pantelides, Rev. Mod. Phys. 50: 797 (1978).Google Scholar
  47. 47.
    H.J. Queisser and D.E. Theodorou, Phys. Rev. Lett. 43:401 (1979). A review by M.K. Sheinkman and A. Ya. Shik, Fiz. Tekh. Poluprovodn. 10:206 (1976) [Sov. Phys. Semicond. 10:128 (1976)]Google Scholar
  48. 48.
    D.E. Theodorou, H.J. Queisser, and E. Bauser, Appl. Phys. Lett. 41: (1982).Google Scholar
  49. 49.
    D.M. Collins, D.E. Mars, B. Fischer and C. Kocot, J. Appl. Phys. 53: (1982).Google Scholar
  50. 50.
    T. Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys. 54: 437 (1982)CrossRefGoogle Scholar
  51. 51.
    K. v. Klitzing, G. borda and M. Pepper, Phys. Rev. Lett. 45: 494 (1981).CrossRefGoogle Scholar
  52. 52.
    D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. Lett. 48: 1559 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Hans Joachim Queisser
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany

Personalised recommendations