Milestones in Silicon Semiconductor Technology

  • Erhard Sirtl
Part of the The IBM Research Symposia Series book series (IRSS)


Shortly after metallurgical-grade silicon (96–98%) had been commercially available via the arc furnace process, selected samples of this polycrystalline product were the basis of a very early electronic device — the crystal detector. During the many empirical tests in his laboratory (by 1920 they literally exceeded the number of 30 000 different substances) Pickardl) discovered the superiority of silicon compared to other substances in 1906 and shared the priority with two other independent investigators2,3). The strong evolution of vacuum tubes in the later decades seemed to restrict the use of such detectors to radio amateurs.Thirty years later, however, the difficulties in the high radio frequency area brought this simple rectifier system and an element called silicon into focus again.


Localize Defect Crystal Detector Intrinsic Point Defect Silicon Ingot Thin Film Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    G.W. Pickard, US Patent 836, 531 (1906)Google Scholar
  2. 2).
    H.M.C. Dunwoody, US Patent 837, 616 (1906)Google Scholar
  3. 3).
    L.W. Austin, Phys.Rev. 24 508 (1907)Google Scholar
  4. 4).
    see review article of J.H. Scaff, Metallurg.Trans. 1 561 (1970)CrossRefGoogle Scholar
  5. 5).
    K. Seiler in “Naturforschung und Medizin in Deutschland 1939–1946” (FIAT-Reports), Vol. 15/16, I-5.2, p.272 ff.Google Scholar
  6. 6).
    D.W. Lyon, C.M. Olson, and E.D. Lewis, J.Electrochem. Soc. 96 (1949)Google Scholar
  7. 7).
    J.Bardeen and W. Brattain, Phys.Rev. 74, 232 (1948)Google Scholar
  8. 8).
    G.K. Teal and E. Buehler, Phys.Rev. 87 190 (1952)Google Scholar
  9. 9).
    P.H. Keck and M.J.E. Golay, Phys.Rev. 89 1297 (1953).CrossRefGoogle Scholar
  10. 10).
    R. Emeis, Z.Naturforsch. 9a 67 (1954)Google Scholar
  11. 11).
    W. Heywang and H. Henker, Z. Elektrochem. 58 283 (1954)Google Scholar
  12. 12).
    see e.g. H. Herrmann, H. Herzer, and E. Sirtl in “Advances in Solid State Physics”, Vol. 15, H.J. Queisser (Ed.), Vieweg, Braunschweig, 1975, p. 279Google Scholar
  13. 13).
    H. Teichmann, “Halbleiter” Bibliographisches Institut, Mannheim, 1962Google Scholar
  14. 14).
    F. Bischoff, German Patents DBP 1 102 117 and 1 140 549 (both 1954 )Google Scholar
  15. 15).
    W.C. Dash, J. appl. Phys. 29 736 (1958)CrossRefGoogle Scholar
  16. 16).
    A.J.R. de Kock, Phylips Res. Rep. Suppl. 1 (1973)Google Scholar
  17. 17).
    H. Föll, U. Gösele and B.O. Kolbesen, J. Crystal Growth 40, 90 (1977)CrossRefGoogle Scholar
  18. 18).
    J. Dietl, D. Helmreich, and E. Sirti, “Solar Silicon” in Crystals: Growth, Properties and Applications, Vol. 5, J. Grabmaier (Ed.), Springer, Berlin-Heidelberg, 1981, p. 43Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Erhard Sirtl
    • 1
  1. 1.Heliotronic GMBHBurghausenGermany

Personalised recommendations