Reactive Ion Etching and Related Polymerization Processes

  • Eric Kay
Part of the The IBM Research Symposia Series book series (IRSS)


The major technological potential of “dry etch” processing arises from the demonstrated control that can be exercised over the etch features even at a submicron resolution level. In addition, high selectivity through judicial choice of chemical etchants and type of radiation, as well as the compatibility with well established vacuum technology practices, further serve to promote several of the evolving dry etching approaches. With the growing importance of “radiation” induced processing technologies, such as reactive ion plasma etching and laser induced chemical etching and deposition, it has become necessary to understand the mechanisms whereby ions, photons and electrons influence surface chemical reactions. This review will emphasize the progress that has been made in understanding the role which ion-surface interactions play in increasing the rates of surface etching processes and how this relates to control over etch feature geometry.


Etch Rate Carbonaceous Deposit Sticking Probability Etch Feature Isotropic Etching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. F. Winters, J. W. Coburn, and T. J. Chuang, J. Vac. Sci. Technol. B 1 (2): 469 (1983).CrossRefGoogle Scholar
  2. 2.
    M. Seel and P. S. Bagus, Phys. Rev. B 23: 5464 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Seel and P. S. Bagus, Phys. Rev. B 28: 2023 (1983).CrossRefGoogle Scholar
  4. 4.
    T. J. Chuang, J. Appl. Phys. 51: 2614 (1980).CrossRefGoogle Scholar
  5. 5.
    F. A. Houle, J. Chem. Phys. 79: 4237 (1983).CrossRefGoogle Scholar
  6. 6.
    F. A. Houle, J. Chem. Phys. (in press)Google Scholar
  7. 7.
    Y. Y. Tu, T. J. Chuang, and H. F. Winters, Phys. Rev. B 23 (2): 823 (1981).CrossRefGoogle Scholar
  8. 8.
    D. L. Flamm, V. M. Donnelly, and J. A. Mucha, J. Appl. Phys. 52: 3633 (1981).CrossRefGoogle Scholar
  9. 9.
    E. A Knabbe, J. W. Coburn, and E. Kay, Surf. Sci. 123: 427 (1982).CrossRefGoogle Scholar
  10. 10.
    K. C. Pandey, T. Sakurai, and H. D. Hagstrum, Phys. Rev. B 16: 3648 (1977).CrossRefGoogle Scholar
  11. 11.
    U. Gerlach-Meyer, J. W. Coburn, and E: Kay, Surf. Sci. 103: 177 (1981).CrossRefGoogle Scholar
  12. 12.
    J. W. Coburn and E. Kay, IBM J. Res. Dev. 23: 33 (1977).CrossRefGoogle Scholar
  13. 13.
    M. M. Millard and E. Kay, J. Electrochem. Soc. 129: 160 (1982).CrossRefGoogle Scholar
  14. 14.
    P. J. Hargis and M. J. Kushner, Appl. Phys. Lett. 40: 779 (1982).CrossRefGoogle Scholar
  15. 15.
    A. Dilks and E. Kay, Macromolecules 14: 855 (1981).CrossRefGoogle Scholar
  16. 16.
    J. W. Coburn, H. F. Winters, and T. J. Chuang, J. Appl. Phys. 48: 3532 (1977).CrossRefGoogle Scholar
  17. 17.
    E. Kay, J. W. Coburn, and G. Kruppa, Le Vide 183: 89 (1976).Google Scholar
  18. 19.
    E. Kay and M. Hecq, ISPC Montreal 2:490 1983, and J. Appl. Phys. in press, January 1984.Google Scholar
  19. 20.
    K. R. Ryan and I. C. Plumb, J. Phys. Chem. 86: 4678 (1982).CrossRefGoogle Scholar
  20. 21.
    I. C. Plumb and K. R. Ryan, ISPC-6 Montreal 2: 326 (1983).Google Scholar
  21. 22.
    D. L. Flamm, C. Y. Mobag, E. R. Sklaver, J. Appl. Phys. 50: 6211 (1977).CrossRefGoogle Scholar
  22. 23.
    H. F. Winters and J. W. Coburn Appl. Phys. Lett 34: 70 (1979).Google Scholar
  23. 24.
    E. Kay, A. Dilks, and U. Hetzler, J. Macromol. Sci.-Chem. A 12: 1393 (1978).CrossRefGoogle Scholar
  24. 25.
    E. Kay and A. Dilks, J. Vac. Sci. Technol. 16: 428 (1978).CrossRefGoogle Scholar
  25. 26.
    E. Kay, A. Dilks, and D. Seybold, J. Appl. Phys. 51: 5678 (1981).CrossRefGoogle Scholar
  26. 27.
    E. Kay and A. Dilks, Thin Solid Films 78: 309 (1981).CrossRefGoogle Scholar
  27. 28.
    M. Hecq, P. Ziemann, and E. Kay, J. Vac. Sci. Technol. 1: 364 (1983).CrossRefGoogle Scholar
  28. 29.
    P. J. Hargis, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Eric Kay
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations