Advertisement

Gene Recruitment for a Subunit of Isopropylmalate Isomerase

  • Jost Kemper
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

The leucine Operon in Salmonella typhimurium consists of four structural genes, leuABCD (Burns et al., 1966; Margolin, 1963), and a control region located adjacent to the leuA gene. The major regulation of the expression of the leucine Operon occurs via modulation of the transcription attenuation of a leader region that responds to the intracellular level of leucyl-tRNAleu (Gemmill et al., 1979; Wessler and Calvo, 1981). In addition, mutations at a locus flr unlinked to the leucine operon result in constitutive expression of the leucine genes as well the isoleucine/valine gene (Fried-berg et al., 1974). The relationship of the leucine genes to the enzymes in the leucine biosynthetic pathway is shown in Fig. 1. The enzymes α-isopropylmalate synthetase (leuA gene product) and β-isopropylmalate dehydrogenase (leuB gene product) have been purified from S. typhimurium and characterized (Kohlhaw et al., 1969; Parson and Burns, 1970). The work described here is particularly concerned with the second leucine biosynthetic enzyme, isopropylmalate isomerase.

Keywords

Mutant Strain Enzyme Subunit leuA Gene Leucine Biosynthesis leuA2010 Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigelis, R., and Umbarger, H. E., 1975. Purification of yeast isopropylmalate isomerase. High ionic strength hydrophobic chromatography, J. Biol. Chem. 250:4315–4321.PubMedGoogle Scholar
  2. Bigelis, R., and Umbarger, H. E., 1976, Yeast α-isopropylmalate isomerase. Factors affecting stability and enzyme activity, J. Biol. Chem. 251:3545–3552.PubMedGoogle Scholar
  3. Burns, R. O., Calvo, J., Margolin, P., and Umbarger, H. E., 1966, Expression of the leucine operon, J. Bacteriol. 91:1570–1576.PubMedGoogle Scholar
  4. Calhoun, D. H., and Hatfield, G. W., 1975, Autoregulation of gene expression, Annu. Rev. Microbiol. 29:275–299.PubMedCrossRefGoogle Scholar
  5. Calvo, R. A., and Calvo, J. M., 1967, Lack of end-product inhibition and repression of leucine synthesis in a strain of Salmonella typhimurium, Science 156:1107–1109.PubMedCrossRefGoogle Scholar
  6. Crawford, I.P., 1975, Gene rearrangements in the evolution of the tryptophan synthetic pathway, Bacteriol. Rev. 39:87–120.PubMedGoogle Scholar
  7. Friedberg, D., Mikulka T. W., Jones, J., and Calvo, J.M., 1974, flrB, a regulatory locus controlling branched-chain amino acid biosynthesis in Salmonella typhimurium, J. Bacteriol. 118:942–951.PubMedGoogle Scholar
  8. Fultz, P. N., and Kemper J., 1981, Wild-type isopropylmalate isomerase in Salmonella typhimurium is composed of two different subunits, J. Bacteriol. 148:210–219.PubMedGoogle Scholar
  9. Fultz, P. N., Kwoh, D. Y. and Kemper, J., 1979, Salmonella typhimurium new D and Escherichi coli leuC genes code for a functional isopropylmalate isomerase in Salmonella typhimurium—Escherichia coli hybrids, J. Bacteriol. 137:1253–1262.PubMedGoogle Scholar
  10. Fultz, P. N., Choung, K. K. L., and Kemper, J., 1980, Construction and characterization of Salmonella typhimurium strains that accumulate and excrete α-and β-isopropylmalate, J. Bacteriol. 142:513–520.PubMedGoogle Scholar
  11. Gemmill, R. M., Wessler S. R., Keller, E. D., and Calvo, J. M., 1979, leu operon of Salmonella typhimurium is controlled by an attenuation mechanism, Proc. Natl. Acad. Sci. USA 76:4941–4945.PubMedCrossRefGoogle Scholar
  12. Grieshaber, M., and Bauerle, R., 1972, Structure and evolution of a bifunction enzyme of the tryptophan operon, Nature New Biol. 236:232–235.CrossRefGoogle Scholar
  13. Gross, S. R., Jungwirth, C., and Umbarger, E., 1962, Another intermediate in leucine biosynthesis, Biochem. Biophys. Res. Commun. 7:5.PubMedCrossRefGoogle Scholar
  14. Gross, S. R., Burns, R. O., and Umbarger, H. E., 1963, The biosynthesis of leucine. II. The enzymic isomerization of β-carboxy-β-hydroxyisocaproate and β-hydroxy-β-carboxyisocaproate, Biochemistry 2:1046–1052.PubMedCrossRefGoogle Scholar
  15. Guerola, N., Imgraham, J. L., and Cerda-Olmeda, E., 1971, Induction of closely linked multiple mutations by nitrosoguanidine, Nature New Biol. 230:122–125.PubMedGoogle Scholar
  16. Hegeman, G. D., and Rosenberg, S. L., 1970, The evolution of bacterial enzyme systems, Annu. Rev. Microbiol. 24:429–462.PubMedCrossRefGoogle Scholar
  17. Hoppe, L., and Roth, J., 1974, Specialized transducing phages derived from Salmonella phage P22, Genetics 76:633–654.PubMedGoogle Scholar
  18. Itikawa, H., and Demerec, M., 1968, Salmonella typhimurium proline mutants, J. Bacteriol. 95:1189–1190.PubMedGoogle Scholar
  19. Jensen, R. A., 1976, Enzyme recruitment in evolution of new functions, Annu. Rev. Microbiol. 30:409–425.PubMedCrossRefGoogle Scholar
  20. Jungwirth, C., Margolin, P., Umbarger E., and Gross S. R., 1961, The initial step in leucine biosynthesis, Biochem. Biophys. Res. Commun. 5:435.CrossRefGoogle Scholar
  21. Kemper, J., 1974a, Gene order and co-transduction in the leu-ara-fol-pyrA region of the Salmonella typhimurium linkage map, J. Bacteriol. 117:94–99.PubMedGoogle Scholar
  22. Kemper, J., 1974b, Evolution of a new gene substituting for the leuD gene of Salmonella typhimurium: Characterization of supQ mutations, J. Bacteriol. 119:937–951.PubMedGoogle Scholar
  23. Kemper, J., 1974c, Evolution of a new gene substituting for the leuD gene of Salmonella typhimurium: Origin and nature of supQ and newD mutations, J. Bacteriol. 120:1176–1185.PubMedGoogle Scholar
  24. Kemper, J., and Margolin, P., 1969, Suppression by gene substitution for the leuD gene of Salmonella typhimurium, Genetics 63:263–279.PubMedGoogle Scholar
  25. Kohlhaw, G., Leary, T. R., and Umbarger, H. E., 1969, α-lsopropylmalate synthetase from Salmonella typhimurium: Purification and properties, J. Biol. Chem. 244:2218–2225.PubMedGoogle Scholar
  26. Kwoh, D. Y., and Kemper, J., 1978a, Bacteriophage P22-mediated specialized transduction in Salmonella typhimurium: High frequency of aberrant prophage excision, J. Virol. 27:519–534.PubMedGoogle Scholar
  27. Margolin, P., 1963, Genetic fine structure of the leucine operon in Salmonella, Genetics 48:441–457.PubMedGoogle Scholar
  28. Middleton, R. D., 1971, The genetic homology of Salmonella typhimurium and Escherichia coli, Genetics 69:303–315.PubMedGoogle Scholar
  29. Miozzari, G. F., and Yanofsky, C., 1979, Gene fusion during the evolution of the tryptophan operon in Enterobacteriaceae, Nature 277:486–489.PubMedCrossRefGoogle Scholar
  30. Morrison, J. F., 1954, The activation of aconitase by ferrous ions and reducing agents, Biochem. J. 58:685–692.PubMedGoogle Scholar
  31. O’Neill, P., and Freundlich, M., 1972, Two forms of biosynthetic acetohydroxy acid synthetase in Salmonella typhimurium, Biophys. Res. Commun. 48:437–443.CrossRefGoogle Scholar
  32. Parson, S. J., and Burns, R. O., 1970, β-lsopropylmalate dehydrogenase (Salmonella typhimurium), Meth. Enzymol. 17A:793–799.CrossRefGoogle Scholar
  33. Pauza, C. D., Karels, M. J., Navre, M., and Schachman, H. K., 1982, Genes encoding Escherichia coli aspartate transcarbamoylase: The pyrBI operon. Proc. Natl. Acad. Sci. USA 79:4020–4024.PubMedCrossRefGoogle Scholar
  34. Powers S. G., and Snell, E. E., 1976, Ketopantoate hydroxymethyltransferase. II. Physical, catalytic, and regulatory properties, J. Biol. Chem. 251:3786–3793.PubMedGoogle Scholar
  35. Reichenbecher, V. E., Jr., and Gross, S. R., 1978, Structural features of normal and complemented forms of the Neurospora isopropylmalate isomerase, J. Bacteriol. 133:802–810.PubMedGoogle Scholar
  36. Rigby, P. W. J., Burleigh, B. D., Jr., and Hartley, B S., 1974, Gene duplication in experimental enzyme evolution, Nature 251:200–204.PubMedCrossRefGoogle Scholar
  37. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu Rev. Microbiol. 32:519–560.PubMedCrossRefGoogle Scholar
  38. Sanderson, K. E., and Hall, C. A., 1970, F-prime factors of Salmonella typhimurium and an inversion between S. typhimurium and Escherichia coli, Genetics 64:215–228.PubMedGoogle Scholar
  39. Sanderson, K. E., Ross, H., Zieglen L., and Makela, H. P., 1972. F+, Hfr, and F′ strains of Salmonella typhimurium and Salmonella abony, Bacteriol. Rev. 36:608–637.PubMedGoogle Scholar
  40. Schwartz, D. O., and Beckwith, J. R., 1969, Mutagens which cause deletions in Escherichia coli, Genetics 61:371–376.PubMedGoogle Scholar
  41. Somers, J. M., Amzallag, A., and Middleton, R. B., 1973, Genetic fine structure of the leucine Operon of Escherichia coli K-12, J. Bacteriol. 113:1268–1272.PubMedGoogle Scholar
  42. Wessler, S. R., and Calvo, J. M., 1981, Control of leu operon expression in Escherichia coli by a transcription attenuation mechanism, J. Mol. Biol. 149:579–597.PubMedCrossRefGoogle Scholar
  43. Wilson, A. C., Carlson, S. S., and White, T. J., 1977, Biochemical evolution, Annu. Rev. Biochem. 46:573–639.PubMedCrossRefGoogle Scholar
  44. Wu, T. T., Lin, C. C., and Tanaka, S., 1968, Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon, J. Bacteriol. 96:447–456.PubMedGoogle Scholar
  45. Wuesthoff, O. G., and Bauerle, R. H., 1970, Mutations creating internal promoter elements in the tryptophan operon of Salmonella typhimurium, J. Mol. Biol. 48:171–196.CrossRefGoogle Scholar
  46. Yang, H.-L., and Kessler, D. P., 1974, Genetic analysis of the leucine region in Escherichia coli B/r: Gene-enzyme assignments, J. Bacteriol. 117:63–72.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jost Kemper
    • 1
  1. 1.Institute of Molecular BiologyUniversity of Texas at DallasRichardsonUSA

Personalised recommendations