Structural Evolution of Yeast Alcohol Dehydrogenase in the Laboratory

  • Christopher Wills
Part of the Monographs in Evolutionary Biology book series (MEBI)


Because our approach to the problems of molecular evolution in the laboratory is rather different from that of most of the other workers contributing to this volume, I would like to begin this review of our recent work on yeast alcohol dehydrogenase with a historical note.


Amino Acid Substitution Alcohol Dehydrogenase Mutant Enzyme Allyl Alcohol Tural Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beier, D. R., and Young, E. T., 1982, Characterization of a regulatory region upstream from the ADR2 locus of S. cerevisiae, Nature 300:724–728.PubMedCrossRefGoogle Scholar
  2. Berger, E. M., 1977, Are synonymous mutations adoptively neutral? Am. Nat. 111:606–607.CrossRefGoogle Scholar
  3. Brändén, C., Jörnvall, H., Eklund, H., and Furugren, B., 1975, Alcohol dehydrogenases, in: The Enzymes, 3rd ed. (P. Boyer, ed.), Academic Press, New York, pp. 103–190.Google Scholar
  4. Ciriacy, M., 1975a, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Isolation and analysis of adh mutants, Mut. Res. 29:315–326.CrossRefGoogle Scholar
  5. Ciriacy, M., 1975b, Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADH-II, Mol. Gen. Genet. 138:157–164.PubMedCrossRefGoogle Scholar
  6. Ciriacy, M., Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADH-II) in Saccharomyces cerevisiae, Mol. Gen. Gent. 145:327-333.Google Scholar
  7. Ciriacy, M., 1979, Isolation and characterization of cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADH II) in Saccharomyces cerevisiae, Mol. Gen. Genet. 176:427–431.PubMedCrossRefGoogle Scholar
  8. Denis, C., Ciriacy, M., and Young, E. T., 1981. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccaromyces cerevisiae, J. Mol. Biol. 148:355–368.PubMedCrossRefGoogle Scholar
  9. Englesberg, E., and Wilcox, G., 1974, Regulation: Positive control, Annu. Rev. Genet. 8:219–242.PubMedCrossRefGoogle Scholar
  10. Goodman, M. G., Moore, G. W., and Matsuda, G., 1975, Darwinian evolution in the genealogy of hemoglobin, Nature 253:603–607.PubMedCrossRefGoogle Scholar
  11. Harris, H., 1966, Enzyme polymorphisms in man, Proc. R. Soc. B 164:298–310.CrossRefGoogle Scholar
  12. Jörnvall, H., 1977a, The primary structure of yeast alcohol dehydrogenase, Eur. J. Biochem. 72:425–442.PubMedCrossRefGoogle Scholar
  13. Jörnvall, H., 1977b, Differences between alcohol dehydrogenases: Structural properties and evolutionary aspects, Eur. J. Biochem. 72:443–452.PubMedCrossRefGoogle Scholar
  14. Jörnvall, H., Fairwell, T., Kratofil, P., and Wills, C., 1980, Differences in α-amino acetylation of isozymes of yeast alcohol dehydrogenase, FEBS Lett. 111:214–218.PubMedCrossRefGoogle Scholar
  15. Kato, T., Berger, S. J., Carter J. A., and Lowry, O., 1973, An enzymatic cycling method for nicotinamide-adenine-dinucleotide with malic and alcohol dehydrogenases, Anal. Biochem. 53:86–97.PubMedCrossRefGoogle Scholar
  16. Kimura, M., 1968, Evolutionary rate at the molecular level, Nature 217:624–626.PubMedCrossRefGoogle Scholar
  17. King, J. L., and Jukes, T. H., 1969. Non-Darwinian evolution: Random fixation of selectively neutral mutations, Science 164:788–798.PubMedCrossRefGoogle Scholar
  18. Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  19. Lewontin, R. C., and Hubby, J. L., 1966, A molecular approach to the study of genetic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura, Genetics 54:595–626.PubMedGoogle Scholar
  20. Lipman, D. J., Smith T. F., Beckman R. J., and Waterman, M. S., 1982, Hierarchical analysis of influenza A hemagglutinin gene sequences, Nucleic Acid Res. 10:5375–5389.PubMedCrossRefGoogle Scholar
  21. Lutstorf, U., and Megret, R., 1968, Multiple forms of alcohol dehydrogenase in Saccharomyces cerevisiae, Arch. Biochem. Biophys. 126:933–944.PubMedCrossRefGoogle Scholar
  22. Megnet, R., 1967, Mutants partially deficient in alcohol dehydrogenase in Schizosaccharomyces pombe, Arch Biochem. Biophys. 121:194–210.PubMedCrossRefGoogle Scholar
  23. Neuberg, C., and Reinfurth, E., 1918, Die Festlegung der Aldehydstufe bei der alkoholischen Gärung, Biochem. Z. 89:365–414.Google Scholar
  24. Northrop, J. H., 1954, Apparatus for maintaining bacterial cultures in steady state, J. Gen. Physiol. 38:105–115.PubMedCrossRefGoogle Scholar
  25. Ohta, T., 1973, Slightly deleterious mutant substitutions in evolution, Nature 246:96–97.PubMedCrossRefGoogle Scholar
  26. Rando, R. R., 1974, Allyl alcohol induced irreversible inhibition of yeast alcohol dehydrogenase, Biochem. Pharmacol 23:2328–2331.PubMedCrossRefGoogle Scholar
  27. Sanger, F., Air, G. M., Barrell, B. G., Brown, N. L., Coulson, A. R., Fiddes, J. C., Hutchison, C. A., Slocombe, P. M., and Smith, M., 1977, Nucleotide-sequence of bacteriophage φX714 DNA, Nature 265:687–695.PubMedCrossRefGoogle Scholar
  28. Sofer, W. H., and Hatkoff, M. A., 1972, Chemical selection of alcohol dehydrogenase negative mutants in Drosophila, Genetics 72:545–549.PubMedGoogle Scholar
  29. Williamson, V. M., Young, E. T., and Ciriacy, M., 1981, Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II, Cell 23:605–614.PubMedCrossRefGoogle Scholar
  30. Wills, C., 1973, In defense of naive pan-selectionism, Am. Nat. 107:23–34.CrossRefGoogle Scholar
  31. Wills, C., 1976a, Production of yeast alcohol dehydrogenase isozymes by selection, Nature 261:26–29.PubMedCrossRefGoogle Scholar
  32. Wills, C., 1976b, Controlling protein evolution, Fed. Proc. 35:2098–2101.PubMedGoogle Scholar
  33. Wills, C., 1978, Rank-order selection is capable of maintaining all genetic polymorphisms, Genetics 89:403–417.PubMedGoogle Scholar
  34. Wills, C., 1981, Genetic Variability, Oxford University Press, Oxford.Google Scholar
  35. Wills, C., and Jörnvall, H., 1979, The two major isozymes of yeast alcohol dehydrogenase, Eur. J. Biochem. 99:323–331.PubMedCrossRefGoogle Scholar
  36. Wills, C., and Martin, T., 1980, Alteration in the redox balance of yeast leads to allyl alcohol resistance, FEBS Lett. 119:105–108.PubMedCrossRefGoogle Scholar
  37. Wills, C., and Phelps, J., 1975, A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity, Arch. Biochem. Biophys. 167:627–637.PubMedCrossRefGoogle Scholar
  38. Wills, C., and Phelps, J., 1978, Functional mutants of yeast alcohol dehydrogenase affecting kinetics, cellular redox balance, and electrophoretic mobility, Biochem. Genet. 16:415–432.PubMedCrossRefGoogle Scholar
  39. Wills, C., Kratofil, P., and Martin, T., 1982, Functional mutants of yeast alcohol dehydrogenase, in: Genetic Engineering of Microorganisms for Chemicals (A. Hollaender, ed.), Plenum Press, New York, pp. 305–329.Google Scholar
  40. Wright, S., 1931, Evolution in Mendelian populations, Genetics 16:97–159.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Christopher Wills
    • 1
  1. 1.Department of BiologyUniversity of California at San DiegoLa JollaUSA

Personalised recommendations