Amidases of Pseudomonas aeruginosa

  • Patricia H. Clarke
Part of the Monographs in Evolutionary Biology book series (MEBI)


In choosing an enzyme of Pseudomonas aeruginosa as the starting point for studies in experimental evolution, we had in mind the well-known biochemical versatility of Pseudomonas species. Many catabolic pathways had been described in detail for species belonging to this genus, and biochemists interested in isolating strains that could attack unusual organic compounds had often found that the isolates obtained from enrichment cultures could be assigned to the Pseudomonas group. A very comprehensive survey of laboratory strains carried out 60 years ago by Den Dooren De Jong (1926) had pointed to Pseudomonas putida as a particularly versatile organism. He found that one of his strains could utilize about 80 of 200 test compounds as the sole carbon source for growth. Among the compounds used in Den Dooren De Jong’s experiments were the sodium salts of bromosuccinic and α- and β-bromopropionic acids. These compounds were laboratory chemicals, and it could be asked whether they were attacked by enzymes with very wide substrate specificities that could not distinguish between halogenated and nonhalogenated substrates or whether there were specific enzymes that had evolved to act on organic compounds that occur rarely if at all in nature. Such questions become particularly pertinent when it is realized that during the last century the activities of the chemical industry have released many synthetic chemicals into the natural environment.


Pseudomonas Aeruginosa Catabolite Repression Amidase Activity Altered Enzyme amiE Gene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, J., Heymann, E., and Krisch, K., 1975, Characterization of an inducible amidase from Pseudomonas acidovorans AE1, Eur. J. Biochem. 53:357–369.PubMedCrossRefGoogle Scholar
  2. Auffret, A. D., 1976, Structural Studies of a Bacterial Amidase, Ph.D. Thesis, University of Edinburgh.Google Scholar
  3. Betz, J. L., and Clarke, P. H., 1972, Selective evolution of phenylacetamide-utilizing strains of Pseudomonas aeruginosa, J. Gen. Microbiol. 73:161–174.PubMedGoogle Scholar
  4. Betz, J. L., and Clarke, P. H., 1973, Growth of Pseudomonas species on phenylacetamide, J. Gen. Microbiol. 75:167–177.PubMedGoogle Scholar
  5. Betz, J. L., Brown, J. E., Clarke, P. H., and Day, M., 1974, Genetic analysis of amidase mutants of Pseudomonas aeruginosa, Genet. Res. Camb. 23:335–359.CrossRefGoogle Scholar
  6. Brammar, W. J., and Clarke, P. H., 1964, Induction and repression of Pseudomonas aeruginosa amidase, J. Gen. Microbiol. 37:307–319.PubMedGoogle Scholar
  7. Brammar, W. J., Clarke, P. H., and Skinner, A. J., 1967, Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system, J. Gen. Microbiol. 47:87–102.PubMedGoogle Scholar
  8. Brown, J. E., and Clarke, P. H., 1970, Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide, J. Gen. Microbiol. 64:329–342.PubMedGoogle Scholar
  9. Brown, J. E., Brown, P. R., and Clarke, P. H., 1969, Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity, J. Gen. Microbiol. 57:273–285.PubMedGoogle Scholar
  10. Brown, P. R., and Clarke, P. H., 1972, Amino acid substitution in an amidase produced by an acetanilide-utilizing mutant of Pseudomonas aeruginose, J. Gen. Microbiol. 70:287–298.PubMedGoogle Scholar
  11. Brown, P. R., Smyth, M. J., Clarke, P. H., and Rosemeyer, M. A., 1973, The subunit structure of the aliphatic amidase from Pseudomonas aeruginosa, Eur. J. Biochem. 34:177–187.PubMedCrossRefGoogle Scholar
  12. Brown, P. R., Gregoriou, M., and Tata, R., 1978, Relationship between mutant amidases of Pseudomonas aeruginosa and hydroxyurea as an inhibitor, Mol. Gen. Genet. 165:213–219.PubMedCrossRefGoogle Scholar
  13. Bühlmann, X., Visher, W. A., and Bruhlin, H., 1961, Identification of apyocyanogenic strains of Pseudomonas aeruginosa, J. Bacteriol. 82:787–790.PubMedGoogle Scholar
  14. Clarke, P. H., 1972, Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species, J. Gen. Microbiol. 71:241–257.PubMedGoogle Scholar
  15. Clarke, P. H., 1974, The evolution of enzymes for the utilisation of novel substrates, in: Evolution in the Microbial World (M. J. Carlisle and J. J. Skehel, eds.), Cambridge University Press, Cambridge, pp. 183–217.Google Scholar
  16. Clarke, P. H., 1978, Experiments in microbial evolution, in: The Bacteria, Vol. 6 (L. N. Ornston and J. R. Sokatch, eds.), Academic Press, New York, pp. 137–218.Google Scholar
  17. Clarke, P. H., 1980, The utilization of amides by microorganisms, in: Microorganisms and Nitrogen Sources (J. W. Payne, ed.), Wiley, Chicester, England.Google Scholar
  18. Clarke, P. H., and Laverack, P. D., 1983, Expression of the argF genes of Pseudomonas aeruginosa in Pseudomonas aeruginosa, Pseudomonas putida and Escherichia coli, J. Bacteriol. 154:508–512.PubMedGoogle Scholar
  19. Clarke, P. H., and Lilly, M. D., 1969, The regulation of enzyme synthesis during growth, in: Microbial Growth (P. M. Meadow and S. J. Pirt, eds.), Cambridge University Press, Cambridge, pp. 113–159.Google Scholar
  20. Clarke, P. H., and Tata, R., 1973, Isolation of amidase-negative mutants of Pseudomonas aeruginosa by a positive selection method using an acetamide analogue, J. Gen. Microbiol. 75:231–234.Google Scholar
  21. Clarke, P. H., Drew, R. E., Turberville, C., Brammar, W. J., Ambler, R. P., and Auffret, A. D., 1981, Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase, Biosci. Rep. 1:299–307.PubMedCrossRefGoogle Scholar
  22. Davies, G. E., and Stark, G. R., 1970, Use of dimethyl suberimidate, a cross-linking reagent in studying the subunit structure of oligomeric proteins, Proc. Natl. Acad. Sci. USA 66:651–656.PubMedCrossRefGoogle Scholar
  23. Den Dooren de Jong, L. E., 1926, Bijdrage tot de kennis van het mineralisatie proces, Nijgh and Van Ditmar, Rotterdam.Google Scholar
  24. Drew, R. E., Clarke, P. H., and Brammar, W. J., 1980, The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa, Mol. Gen. Genet. 177:311–320.PubMedCrossRefGoogle Scholar
  25. Farin, F., and Clarke, P. H., 1978, Positive regulation of amidase synthesis in Pseudomonas aeruginosa, J. Bacteriol. 135:379–392.PubMedGoogle Scholar
  26. Findlater, J. D., and Orsi, B. A., 1973, Transition-state analogs of an aliphatic amidase, FEBS Lett. 35:109–111.PubMedCrossRefGoogle Scholar
  27. Gregoriou, M., and Brown, P. R., 1979, Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds, Eur. J. Biochem. 96:101–108.PubMedCrossRefGoogle Scholar
  28. Gregoriou, M., Brown, P. R., and Tata, R., 1977, Pseudomonas aeruginosa mutants resistant to urea inhibition of growth on acetanilide, J. Bacteriol. 132:377–384.PubMedGoogle Scholar
  29. Haas, D., and Holloway, B. W., 1976, R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa, Mol. Gen. Genet. 144:243–251.PubMedCrossRefGoogle Scholar
  30. Hall, B. G., 1981, Changes in the substrate specificities of an enzyme during directed evolution of new functions, Biochemistry 20:4042–4049.PubMedCrossRefGoogle Scholar
  31. Hall, B. G., and Clarke, N. D., 1977, Regulation of newly evolved enzymes. III Evolution of the ebg repressor during selection for enhanced lactase activity, Genetics 85:193–201.PubMedGoogle Scholar
  32. Hall, B. G., and Hartl, D. L., 1974, Regulation of newly evolved enzymes I. selection of a novel lactase regulated by lactose in Escherichia coli, Genetics 16:391–400.Google Scholar
  33. Hall, B. G., and Zuzel, T., 1980, Evolution of a new enzymatic function by recombination within a gene, Proc. Natl. Acad. Sci. USA 77:3529–3533.PubMedCrossRefGoogle Scholar
  34. Hartley, B. S., 1974, Enzyme families, in: Evolution in the Microbial World (M. J. Carlisle and J. J. Skehel, eds.), Cambridge University Press, Cambridge, pp. 151–182.Google Scholar
  35. Hedges, R. W., and Jacob, A. E., 1977, In vitro translocation of genes of Pseudomonas aeruginosa on to a promiscuously transmissible plasmid, FEMS Lett. 2:15–19.CrossRefGoogle Scholar
  36. Hedges, R. W., Jacob, A. E., and Crawford, I. P., 1977, Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthetase genes, Nature 267:283–284.PubMedCrossRefGoogle Scholar
  37. Hollaway, M. R., and Ticho, T., 1979, A competition time-course method for following enzymic reactions applied to the hydrolysis of acetamide catalysed by an aliphatic amidase, FEBS Lett. 106:185–188.PubMedCrossRefGoogle Scholar
  38. Hollaway, M. R., Clarke, P. H., and Ticho, T., 1980, Chloracetone as an active-site-directed inhibitor of the aliphatic amidase from Pseudomonas aeruginosa, Biochem. J. 191:811–826.PubMedGoogle Scholar
  39. Holloway, B. W., 1955, Genetic recombination in Pseudomonas aeruginosa, J. Gen. Microbiol. 13:572–581.PubMedGoogle Scholar
  40. Holloway, B. W., and Crockett, 1982, Chromosome map of Pseudomonas aeruginosa PAO, Genet. Maps 2:165–167.Google Scholar
  41. Holloway, B.W., and Monk, M., 1959, Transduction in Pseudomonas aeruginosa, Nature 184:1426–1427.PubMedCrossRefGoogle Scholar
  42. Jayaraman, K., Müller-Hill, B., and Rickenberg, H. V., 1966, Inhibition of the synthesis of β-galactosidase in Escherichia coli by 2-nitrophenyl-β-d-fucoside, J. Mol. Biol. 18:339–343.PubMedCrossRefGoogle Scholar
  43. Kelly, M., 1960, An Investigation of the Action of Pseudomonas aeruginosa on Amides and Related Compounds, Ph.D. thesis, University of London.Google Scholar
  44. Kelly, M., and Clarke, P. H., 1960, Amidase production by Pseudomonas aeruginosa, Biochem. J. 74:21P.Google Scholar
  45. Kelly, M., and Clarke, P. H., 1962, An inducible amidase produced by a strain of Pseudomonas aeruginosa, J. Gen. Microbiol. 27:305–316.PubMedGoogle Scholar
  46. Kelly, M., and Kornberg, H. L., 1964, Purification and properties of acyltransferases from Pseudomonas aeruginosa, Biochem. J. 93:557–566.PubMedGoogle Scholar
  47. McFarlane, N. D. D., 1967, Studies on Pseudomonas aeruginosa Amidase, Ph.D. Thesis, University of London, England.Google Scholar
  48. McFarlane, N. D., Brammar, W. J., and Clarke, P. H., 1965, Esterase activity of Pseudomonas aeruginosa amidase, Biochem. J. 95:24C–25C.PubMedGoogle Scholar
  49. Morgan, A. D., 1982, Isolation and characterization of Pseudomonas aeruginosa R′ plasmids constructed by means of interspecific mating, J. Bacteriol. 149:654–661.PubMedGoogle Scholar
  50. Mossel, D. A. A., and Van Zadelhoff, C. 1971, The selective detection of Pseudomonas aeruginosa in water, J. Gen. Microbiol. 69:XIV.PubMedGoogle Scholar
  51. Paterson, A., and Clarke, P. H., 1979, Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa, J. Gen. Microbiol. 114:75–85.PubMedGoogle Scholar
  52. Sadler, J., and Novick, A., 1965, The properties of repressor and the kinetics of its action, J. Mol. Biol. 12:305–327.PubMedCrossRefGoogle Scholar
  53. Skinner, A. J., and Clarke, P. H., 1968, Acetate and acetamide mutants of Pseudomonas aeruginosa 8602, J. Gen. Microbiol. 50:183–194.PubMedGoogle Scholar
  54. Smyth, P. F., and Clarke, P. H., 1975a, Catabolite repression of Pseudomonas aeruginosa amidase: The effect of carbon source on amidase synthesis, J. Gen. Microbiol. 90:81–90.PubMedGoogle Scholar
  55. Smyth, P. F., and Clarke, P. H., 1975b, Catabolite repression of Pseudomonas aeruginosa amidase: Isolation of promoter mutants, J. Gen. Microbiol. 90:91–99.PubMedGoogle Scholar
  56. Stanier, R. Y., Palleroni, N. J., and Doudoroff, M., 1966, The aerobic pseudomonads; A taxonomic study, J. Gen. Microbiol. 43:159–271.PubMedGoogle Scholar
  57. Turberville, C., and Clarke, P. H., 1981, A mutant of Pseudomonas aeruginosa PAC with an altered amidase induced by the novel substrate, FEMS Microbiol. Lett. 10:87–90.CrossRefGoogle Scholar
  58. Woods, M. J., Findlater, J. D., and Orsi, B. A., 1979, Kinetic mechanism of the aliphatic amidase from Pseudomonas aeruginosa, Biochim. Biophys. Acta 567:225–237.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Patricia H. Clarke
    • 1
  1. 1.Department of BiochemistryUniversity College LondonLondonEngland

Personalised recommendations