Advertisement

Functional Divergence of the L-Fucose System in Mutants of Escherichi coli

  • E. C. C. Lin
  • T. T. Wu
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

The catabolic system for l-fucose of Escherichia coli has given rise to a number of novel metabolic functions. Studies on this system have yielded illustrations of three concepts for biochemical evolution: (1) a pyridine nucleotide-linked oxidoreductase can be elected by the cell to serve as either a dehydrogenase or a reductase, depending primarily on the mode of regulating the expression of the structural gene and on the nature of the preceding and following reactions in the pathway; (2) genetic mobilization of components of an established metabolic systems for a novel function can lead to the extinction of the remaining genes that become superfluous; and (3) once the expression of a structural gene is liberated from its normal regulatory constraint to provide a new service, the gene product can act as steppingstone for the elaboration of other novel metabolic pathways—the principle of preadaptation (Lin et al., 1976; Wu, 1978; Lin, 1979, 1981). The evolutionary studies of the fucose system, as well as metabolic systems derived from or related to it, will be presented partly in a historical framework, since the ways in which knowledge unfolds and converges are often of heuristic value themselves.

Keywords

Escherichia Coli Catabolic Pathway COLI Mutant Dihydroxyacetone Phosphate Aerobacter Aerogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115:824–847.PubMedGoogle Scholar
  2. Albery, W. J., and Knowles, J. R., 1976, Evolution of enzyme function and the development of catalytic efficiency, Biochemistry 15:5631–5640.PubMedCrossRefGoogle Scholar
  3. Andrews, K. J., and Lin, E. C. C., 1976, Selective advantages of various bacterial carbohydrate transport mechanisms, Fed. Proc. 35:2185–2189.PubMedGoogle Scholar
  4. Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, Edition 7, Microbiol. Rev. 47:180–230.PubMedGoogle Scholar
  5. Bartkus, J. M., and Mortlock, R. P., 1983, Induction of l-fucose isomerase in wild-type and d-arabinose utilizing strains of Escherichia coli K-12, Abst. Am. Soc. Microbiol. 216.Google Scholar
  6. Boronat, A., and Aguilar, J., 1979, Rhamnose induced propanediol oxidoreductase in Escherichia coli: Purification, properties and comparison with the fucose-induced enzyme, J. Bacteriol. 140:320–326.PubMedGoogle Scholar
  7. Boronat, A., and Aguilar, J., 1981a, Experimental evolution of propanediol oxidoreductase in Escherichia coli, Biochim. Biophys. Acta 672:98–107.PubMedCrossRefGoogle Scholar
  8. Boronat, A., and Aguilar, J., 1981b, Metabolism of l-fucose and l-rhamnose in Escherichia coli: Differences in induction of propanediol oxidoreductase, J. Bacteriol. 147:181–185.PubMedGoogle Scholar
  9. Boronat, A., Caballero, E, and Aguilar, J., 1983, Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli, J. Bacteriol. 153:134–139.PubMedGoogle Scholar
  10. Boulter, J. R., and Gielow, W. O., 1973, Properties of d-arabinose isomerase purified from two strains of Escherichia coli, J. Bacteriol. 113:687–696.PubMedGoogle Scholar
  11. Caballero, E., Baldoma, L., Ros, J., Boronat, A., and Aguilar, J., 1983, Identification of lactaldehyde dehydrogenase and glycolaldehyde dehydrogenase as functions of the same protein in Escherichia coli, J. Biol. Chem. 258:7788–7792.PubMedGoogle Scholar
  12. Camyre, K. P., and Mortlock, R. P., 1965, Growth of Aerobacter aerogenes on d-arabinose and l-xylose, J. Bacteriol. 90:1157–1158.PubMedGoogle Scholar
  13. Chakrabarti, T., Chen, Y.-M., and Lin, E. C. C., 1984, Clustering of genes for l-fucose dissimilation by Escherichia coli, J. Bacteriol. 157:984–986.PubMedGoogle Scholar
  14. Charnetzky, W. T., and Mortlock, R. P., 1974, Close genetic linkage of the determinants of the ribitol and d-arabitol catabolic pathways in Klebsiella aerogenes, J. Bacteriol. 119:176–182.PubMedGoogle Scholar
  15. Chen, Y.-M., Lin, E. C. C., Ros, J., and Aguilar, J., 1983, Use of operon fusions to examine the regulation of the l-1,2-propanediol oxidoreductase gene of the fucose system in Escherichia coli, J. Gen. Microbiol. 129:3355–3362.PubMedGoogle Scholar
  16. Chen, Y.-M., and Lin, E. C. C., 1984a, Post-transcriptional control of l-1,2-propanediol oxidoreductase in the l-fucose pathway of Escherichia coli K-12, J. Bacteriol. 157:341–344.PubMedGoogle Scholar
  17. Chen, Y.-M., and Lin, E. C. C., 1984b, Dual control of a common l-1,2-propanediol oxidoreductase by l-fucose and l-rhamnose in Escherichia coli, J. Bacteriol. 157:828–832.PubMedGoogle Scholar
  18. Chen, Y.-M., Chakrabarti, T., and Lin, E. C. C., 1984, J. Bacteriol. (in press).Google Scholar
  19. Chiu, T. H., and Feingold, D. S., 1964, The purification and properties of l-rhamnulokinase, Biochim. Biophys. Acta 92:489–497.PubMedGoogle Scholar
  20. Chiu, T. H., and Feingold, D. S., 1965, Substrate specificity of l-rhamnulose 1-phosphate aldolase, Biochem. Biophys. Res. Commun. 19:511–516.PubMedCrossRefGoogle Scholar
  21. Chiu, T. H., and Feingold, D. S., 1969, l-rhamnulose 1-phosphate aldolase from Escherichia coli. Crystallization and properties, Biochemistry 8:98–108.PubMedCrossRefGoogle Scholar
  22. Cocks, G. T., Aguilar, J., and Lin, E. C. C., 1974, Evolution of l-1,2-propanediol catabolism in Escherchia coli by recruitment of enzymes for l-fucose and l-lactate metabolism, J. Bacteriol. 118:83–88.PubMedGoogle Scholar
  23. Cohen, S. S., 1953, Studies on d-ribulose and its enzymatic conversion to d-arabinose, J. Biol. Chem. 201:72–84.Google Scholar
  24. David, J.D, and Wiesmeyer, H., 1970, Control of xylose metabolism in Escherichia coli, Biochim. Biophys. Acta 201:497–499.PubMedCrossRefGoogle Scholar
  25. Davis, B. D., 1958, On the importance of being ionized, Arch. Biochem. Biophys. 87:497–509.CrossRefGoogle Scholar
  26. Falkow S., Schneider, H., Baron, L. S., and Formal, S. B., 1963, Virulence of Escherichia-Shigella genetic hybrids for the guinea pig, J. Bacteriol. 86:1251–1258.PubMedGoogle Scholar
  27. Ghalambor, M. A., and Heath, E. C., 1962, The metabolism of l-fucose. II. The enzymatic cleavage of l-fuculose-1-phosphate, J. Biol. Chem. 237:2427–2433.PubMedGoogle Scholar
  28. Green, M., and Cohen, S. S., 1956, The enzymatic conversion of l-fucose to l-fuculose, J. Biol. Chem. 219:557–568.PubMedGoogle Scholar
  29. Hacking, A. J., and Lin, E. C. C., 1976, Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli, J. Bacteriol. 126:1166–1172.PubMedGoogle Scholar
  30. Hacking, A. J., and Lin, E. C. C., 1977, Regulator changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli, J. Bacteriol. 130:832–838.PubMedGoogle Scholar
  31. Hacking, A. J., Aguilar, J., and Lin, E. C. C., 1978, Evolution of propanediol utilization in Escherichia coli: Mutant with improved substrate-scavenging power, J. Bacteriol. 136:522–530.PubMedGoogle Scholar
  32. Haldane, J. B. S., 1930, Enzymes, Longmans, Green and Co., London, pp. 80–83.Google Scholar
  33. Heath, E. C., and Ghalambor, M. A., 1962, The metabolism of l-fucose. I. The purification and properties of l-fuculose kinase, J. Biol. Chem. 273:2423–2426.Google Scholar
  34. Heller, K. B., Lin, E. C. C., and Wilson, T. H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol. 144:274–278.PubMedGoogle Scholar
  35. Kluyver, A. J., and Schnellen, C., 1937, Uber die Vergarung von Rhamnose, Enzymologia 4:7–12.Google Scholar
  36. Krebs, H. A., and Kornberg, H. L., 1957, Energy transformations in living matter, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 49:212–298.Google Scholar
  37. LeBlanc, D. J., and Mortlock, R. P., 1971a, Metabolism of d-arabinose: Origin of a d-ribulokinase activity in Escherichia coli, J. Bacteriol. 106:82–89.PubMedGoogle Scholar
  38. LeBlanc, D. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose: A new pathway in Escherichia coli, J. Bacteriol. 106:90–96.PubMedGoogle Scholar
  39. LeBlanc, D. J., and Mortlock, R. P., 1972, The metabolism of d-arabinose: Alternate kinases for the phosphorylation of d-ribulose in Escherichia coli and Aerobacter aerogenes, Arch. Biochem. Biophys. 150:774–781.PubMedCrossRefGoogle Scholar
  40. Lerner, S. A., Wu, T. T., and Lin, E. C. C., 1964, Evolution of catabolic pathway in bacteria, Science 146:1313–1315.PubMedCrossRefGoogle Scholar
  41. Lin, E. C. C., 1970, Evolution of catabolic pathways in bacteria, in: Miami Winter Symposia, Vol. 1, North-Holland, Amsterdam, pp. 89–102.Google Scholar
  42. Lin, E. C. C., 1979, Importance of regulatory mutations in channeling the evolution of metabolic pathways in bacteria, in: Genetics of Industrial Microorganisms (O. K. Sebek and A. I. Laskin, eds.), American Society for Microbiology, Washington, D. C., pp. 274–279.Google Scholar
  43. Lin, E. C. C., 1981, Conversion of reductases to dehydrogenases by regulatory mutations, in: Trends in the Biology of Fermentations for Fuels and Chemicals (A. Hollaender and R. Rabson, eds.), Plenum Press, New York, pp. 305–313.Google Scholar
  44. Lin, E. C. C., Hacking, A. J., and Aguilar, J., 1976, Experimental models of acquisitive evolution, BioScience 26:548–555.CrossRefGoogle Scholar
  45. Link, C. D. and Reiner, A. M., 1982, Inverted repeats surround the ribitol—arabitol genes of E. coli, Nature 298:95–96.CrossRefGoogle Scholar
  46. Maleszka, R., Wang, P. Y., and Schneider, H., 1982, A ColEl hybrid plasmid containing Escherichia coli genes complementing d-xylose negative mutants of Escherichia coli and Salmonella typhimurium, Can. J. Biochem. 60:144–151.PubMedGoogle Scholar
  47. Mayo, J. W., and Anderson, R. L., 1968, Pathway of l-mannose degradation in Aerobacter aerogenes, J. Biol. Chem. 243:6330–6333.PubMedGoogle Scholar
  48. Mayo, J. W., and Anderson, R. L., 1969, Basis for the mutational acquisition of the ability of Aerobacter aerogenes to grow on l-mannose, J. Bacteriol. 100:948–955.PubMedGoogle Scholar
  49. McCarthy, B. J., and Bolton, E. T., 1963, An approach to the measurement of genetic relatedness among organisms, Proc. Natl. Acad. Sci. USA 50:156–164.PubMedCrossRefGoogle Scholar
  50. Monod, J., 1947, The phenomenon of enzymatic adaptation, Growth Symp. 11:223–289.Google Scholar
  51. Mortlock, R. P., 1982, Metabolic acquisitions through laboratory selection, Annu. Rev. Microbiol. 36:259–284.PubMedCrossRefGoogle Scholar
  52. Old, D. C., and Mortlock, R. P., 1977, The metabolism of d-arabinose by Salmonella typhimurium, J. Gen. Microbiol. 101:341–344.PubMedGoogle Scholar
  53. Oliver, E. J., and Mortlock, R. P., 1971a, Growth of Aerobacter aerogenes on d-arabinose: Origin of the enzyme activities, J. Bacteriol. 108:287–292.PubMedGoogle Scholar
  54. Oliver, E. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose by Aerobacter aerogenes: Purification of the isomerase, J. Bacteriol. 108:293–299.PubMedGoogle Scholar
  55. Ornston, L. N., and Ornston, M. K., 1969. Regulation of glyoxylate metabolism in Escherichia coli K-12, J. Bacteriol. 98:1098–1108.PubMedGoogle Scholar
  56. Ørskov, I., 1974, Genus VI. Klebsiella Trevisan 1885, 105 Norn. cons. Opin, 13, Jud. Comm. 1954, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), Williams and Wilkins, Baltimore, pp. 321–325.Google Scholar
  57. Power, J., 1967, the l-rhamnose genetic system in Escherichia coli K-12, Genetics 55:557–568.PubMedGoogle Scholar
  58. Richey, D. P., and Lin, E. C. C., 1972, Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli, J. Bacteriol. 112:784–790.PubMedGoogle Scholar
  59. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32:519–560.PubMedCrossRefGoogle Scholar
  60. Ros J., and Aguilar, J., 1984, Genetic and structural evidence for the presence of propanediol oxidoreductase isoenzymes in Escherichia coli, J. Gen. Microbiol. 130:687–692.PubMedGoogle Scholar
  61. St. Martin, E. J., and Mortlock, R. P., 1976, Natural and altered induction of the l-fucose catabolic enzymes in Klebsiella aerogenes, J. Bacteriol. 127:91–97.Google Scholar
  62. St. Martin, E. J., and Mortlock, R. P., 1977, A comparison of alternate metabolic strategies for the utilization of d-arabinose, J. Mol. Evol. 10:111–122.PubMedCrossRefGoogle Scholar
  63. Sanno, Y., Wilson, T. H., and Lin, E. C. C., 1968, Control of permeation to glycerol in cells of Escherichia coli, Biochem. Biophys. Res. Commun. 32:344–349.PubMedCrossRefGoogle Scholar
  64. Sawada, H., and Takagi, Y., 1964, The metabolism of l-rhamnose in Escherichia coli. III. l-Rhamnulose-phosphate aldolase, Biochim. Biophys. Acta 92:26–32.PubMedGoogle Scholar
  65. Scangos, G. A., and Reiner, A. M., 1978, Ribitol and d-arabitol catabolism in Escherichia coli, J. Bacteriol. 134:492–500.PubMedGoogle Scholar
  66. Schwartz, N. B., and Feingold, D. S., 1972, l-Rhamnulose 1-phosphate adolase from Escherichia coli. III. The role of divalent cations in enzyme activity, Bioinorgan. Chem. 2:75–86.CrossRefGoogle Scholar
  67. Skjold, A. C., and Ezekiel, D. H., 1982a, Analysis of lambda insertions in the fucose utilization region of Escherichia coli K-12: Use of fuc and argA transducing bacteriophages to partially order the fucose utilization genes, J. Bacteriol. 152:120–125.PubMedGoogle Scholar
  68. Skjold, A. C., and Ezekiel, D. H., 1982b, Regulation of d-arabinose utilization in Escherichia coli K-12, J. Bacteriol. 152:521–523.PubMedGoogle Scholar
  69. Sridhara, S., and Wu, T. T., 1969, Purification and properties of lactaldehyde dehydrogenase in Escherichia coli, J. Biol. Chem. 244:5233–5238.PubMedGoogle Scholar
  70. Sridhara, S., Wu, T. T., Chused, T. M., and Lin, E. C. C., 1969, Ferrous-activated nicotinamide adenine dinucleotide-linked dehydrogenase from a mutant of Escherichia coli capable of growth on 1,2-propanediol, J. Bacteriol. 98:87–95.PubMedGoogle Scholar
  71. Takagi, Y., and Sawada, H., 1964a, The metabolism of l-rhamnose in Escherichia coli. I. l-Rhamnose isomerase, Biochim. Biophys. Acta 92:10–17.PubMedGoogle Scholar
  72. Takagi, Y., and Sawada, H., 1964b, The metabolism of l-rhamnose in Escherichia coli. II. l-Rhamnulose kinase, Biochim. Biophys. Acta 92:18–25.PubMedGoogle Scholar
  73. Taylor, A. L., and Trotter, C. D., 1967, Revised linkage map of Escherichia coli, Bacteriol. Rev. 31:332–353.PubMedGoogle Scholar
  74. Wilson, D. M., and Ajl, S., 1957a, Metabolism of l-rhamnose by Escherichia coli. I. l-Rhamnose isomerase, J. Bacteriol. 73:410–414.PubMedGoogle Scholar
  75. Wilson, D. M., and Ajl, S., 1957b, Metabolism of l-rhamnose by Escherichia coli. II. The phosphorylation of l-rhamnulose, J. Bacteriol. 73:415–420.PubMedGoogle Scholar
  76. Wilson, B. L., and Mortlock, R. P., 1973, Regulation of d-xylose and d-arabitol catabolism by Aerobacter aerogenes; J. Bacteriol. 113:1404–1411.PubMedGoogle Scholar
  77. Wimpenny, J. W. T., and Firth, A., 1972, Levels of nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide in facultative bacteria and the effect of oxygen, J. Bacteriol. 111:24–32.PubMedGoogle Scholar
  78. Wu, T. T., 1967a, Growth of a mutant of Escherichia coli K-12 on xylitol by recruiting enzymes for d-xylose and l-1,2-propanediol metabolism, Biochim. Biophys. Acta 428:656–663.CrossRefGoogle Scholar
  79. Wu, T. T., 1976b, Growth on d-arabitol of a mutant strain of Escherichia coli K12 using a novel dehydrogenase and enzymes related to l-1,2-propanediol and d-xylose metabolism, J. Gen. Microbiol. 94:246–256.PubMedGoogle Scholar
  80. Wu, T. T., 1978, Experimental evolution in bacteria, Crit. Rev. Microbiol, 6:33–51.CrossRefGoogle Scholar
  81. Wu, T. T., Lin, E. C. C., and Tanaka, S., 1968, Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon source, J. Bacteriol. 96:447–456.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. C. C. Lin
    • 1
  • T. T. Wu
    • 2
  1. 1.Departments of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA
  2. 2.Departments of Biochemistry and Molecular BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations