Advertisement

The Development of Catabolic Pathways for the Uncommon Aldopentoses

  • Robert P. Mortlock
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

Those aldehyde sugars that are five carbons in length are known as aldopentoses. Alternate positions of the hydroxyl groups can give rise to eight possible epimeric structures: d- and l-ribose, d- and l-arabinose, d- and l-lyxose, and d- and l-xylose. The different hydroxyl configurations of these eight sugars can be seen in Fig. 1.

Keywords

Parent Strain Catabolic Pathway Isomerase Activity Klebsiella Strain Aerobacter Aerogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. L., and Allison, D. P., 1965, Purification and characterization of d-lyxose isomerase, J. Biochem. 240:2367–2372.Google Scholar
  2. Anderson, R. L., and Wood, W. A., 1960, l-Xylulokinase and l-xylulose 5-phosphate-l-ribulose 5-phosphate 3-epimerase in Aerobacter aerogenes, Biochim. Biophys. Acta Google Scholar
  3. Anderson, R. L., and Wood, W. A., 1962a, Pathway of l-xylose and l-lyxose degradation in Aerobacter aerogenes, J. Biol. Chem. 237:296–303.PubMedGoogle Scholar
  4. Anderson, R. L., and Wood, W. A., 1962b, Purification and properties of l-xylulokinase, J. Biol. Chem. 237:1029–1033.PubMedGoogle Scholar
  5. Bachmann, B. J., and Low, K. B., 1975, Linkage map of Escherichia coli K-12, edition 6, Microbiol. Rev. 44:1–56.Google Scholar
  6. Bartkus, J. M., and Mortlock, R. P., 1983, Induction of l-fucose isomerase in wild-type and d-arabinose utilizing strains of Escherichia coli K-12, Abstr. Annu. Rev. Microbiol. K 238, p. 216.Google Scholar
  7. Bisson, T. M., Oliver, E. J., and Mortlock, R. P., 1968, Regulation of pentitol metabolism by Aerobacter aerogenes. II. Induction of the ribitol pathway, J. Bacteriol. 95:932–936.PubMedGoogle Scholar
  8. Briggs, J., Finch, P., Percival, E., and Weigel, H., 1982, Assignment of the l configuration to the fucose elaborated by brown seaweeds, Carbohydrate Res. 103:186–189.CrossRefGoogle Scholar
  9. Camyre, K. P., and Mortlock, R. P., 1965, Growth of Aerobacter aerogenes on d-arabinose and l-xylose, J. Bacteriol. 90:1157–1158.PubMedGoogle Scholar
  10. Cohen, S. S., 1953, Studies on d-ribulose and its enzymatic conversion to d-arabinose, J. Biol. Chem. 201:71–83.PubMedGoogle Scholar
  11. Dills, S. S., Apperson, A., Schmidt, M. R., and Saier, Jr., M. H., 1980, Carbohydrate transport in bacteria. Microbiol. Rev. 44:385–418.PubMedGoogle Scholar
  12. Englesberg, E., 1971, Regulation in the l-arabinose system, in: Metabolic Pathways, Vol. 1 (J. Vogel, ed.), Academic Press, New York, pp. 257–294.Google Scholar
  13. Green, M., and Cohen, S. S., 1956, Enzymatic conversion of l-fucose to l-fuculose, J. Biol. Chem. 19:557–568.Google Scholar
  14. Gutnick, D., Calvo, J. M., Klopotowski, T., and Ames, B. N., 1969, Compounds which serve as the sole source of carbon and nitrogen for Salmonella typhimurium LT2, J. Bacteriol. 100:215–219.PubMedGoogle Scholar
  15. Horecker, B. L., 1962, Oxidative pathways, in: Pentose Metabolism in Bacteria. CIBA Lectures in Microbial Biochemistry, Wiley, New York.Google Scholar
  16. Hotta, K., and Kurokawa, M., 1973, A novel sialic acid and fucose-containing disaccharide isolated from the jelly coat of sea urchin eggs, J. Biol. Chem. 248:629–631.PubMedGoogle Scholar
  17. Laskin, A. I., and Lechevalier, H. A., 1973, in: Handbook of Microbiology, Vol. II: Microbial Composition (A. I. Laskin, and H. A. Lechevalier, eds.), CRC Press, Cleveland, Ohio.Google Scholar
  18. LeBlanc, D. J., and Mortlock, R. P., 1971a, Metabolism of d-arabinose: Origin of a d-ribulokinase activity in Escherichia coli, J. Bacteriol. 106:82–89.PubMedGoogle Scholar
  19. LeBlanc, D. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose: A new pathway in Escherichia coli, J. Bacteriol. 106:90–96.PubMedGoogle Scholar
  20. LeBlanc, D. J., and Mortlock, R. P., 1972, The metabolism of d-arabinose: Alternate kinases for the phosphorylation of d-ribulose in Escherichia coli and Aerobacter aerogenes, Arch. Biochem. Biophys. 150:774–781.PubMedCrossRefGoogle Scholar
  21. LeBlanc, D. J., and Mortlock, R. P., 1973, Regulation of the l-arabinose catabolic pathway in Aerobacter aerogenes, Arch. Biochem. Biophys. 156:390–396.PubMedCrossRefGoogle Scholar
  22. Messer, M., and Kerry, K. R., 1973, Milk carbohydrates of the echidna and the platypus, Science 180:201–203.PubMedCrossRefGoogle Scholar
  23. Mortlock, R. P., 1976, Catabolism of unnatural carbohydrates by microorganisms, Adv. Microb. Phys. 13:1–55.CrossRefGoogle Scholar
  24. Mortlock, R. P., and Wood, W. A., 1964a, Metabolism of pentoses and pentitols by Aerobacter aerogenes I. Demonstration of pentose isomerase, pentulokinase, and pentitol dehydrogenase enzyme families, J. Bacteriol. 88:838–844.PubMedGoogle Scholar
  25. Mortlock, R. P., and Wood, W. A., 1964b, Metabolism of pentoses and pentitols by Aerobacter aerogenes. II. Mechanism of acquisition of kinase, isomerase, and dehydrogenase activity, J. Bacteriol. 88:845–849.PubMedGoogle Scholar
  26. Old, D. C., and Mortlock, R. P., 1977, The metabolism of d-arabinose by Salmonella typhimurium, J. Gen. Microbiol. 101:341–344.PubMedGoogle Scholar
  27. Oliver, E. J., and Mortlock, R. P., 1971a, Growth on Aerobacter aerogenes on d-arabinose: Origin of the enzyme activities, J. Bacteriol. 108:287–292.PubMedGoogle Scholar
  28. Oliver, E. J., and Mortlock, R. P., 1971b, Metabolism of d-arabinose by Aerobacter aerogenes: Purification of the isomerase, J. Bacteriol. 108:293–299.PubMedGoogle Scholar
  29. Palleroni, N. J., and Doudoroff, M., 1956, Mannose isomerase of Pseudomonas saccharophila, J. Biol. Chem. 218:535–548.PubMedGoogle Scholar
  30. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32:519–560.PubMedCrossRefGoogle Scholar
  31. St. Martin, E. J., and Mortlock, R. P., 1976, Natural and altered induction of the l-fucose catabolic enzymes in Klebsiella aerogenes, J. Bacteriol. 127:91–97.Google Scholar
  32. St. Martin, E. J., and Mortlock, R. P., 1977, A comparison of alternate metabolic strategies for the utilization of d-arabinose, J. Mol. Evol. 10:111–122.PubMedCrossRefGoogle Scholar
  33. Schaffer, R., 1972, Naturally occuring monosaccharides, in: The Carbohydrates, Vol. IA (W. Pigman and D. Horton, eds.), Academic Press, New York, pp. 69–111.Google Scholar
  34. Skjold, A. C., and Ezekiel, D. H., 1982, Regulation of d-arabinose utilization in Escherichia coli K-12, J. Bacteriol. 152:521–523.PubMedGoogle Scholar
  35. Stevens, F. J., and Wu, T. T., 1976, Growth on d-lyxose of mutant strain of Escherichia coli K12 using a novel isomerase and enzymes related to d-xylose metabolism. J. Gen. Microbiol 97:257–265.PubMedGoogle Scholar
  36. Stevens, F. J., Stevens, P. W., Hovis, J. G., and Wu, T. T., 1981, Some properties of d-mannose isomerase from Escherichia coli K12, J. Gen. Microbiol. 124:219–223.PubMedGoogle Scholar
  37. Wilson, B. L., and Mortlock, R. P., 1972, Regulation of d-xylose and d-arabitol catabolism in Aerobacter aerogenes, J. Bacteriol. 113:1404–1411.Google Scholar
  38. Zipkas, D., and Riley, M., 1975, Proposal concerning mechanism of evolution of the genome of Escherichia coli, Proc. Natl. Acad. Sci. USA 72:1354–1358.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert P. Mortlock
    • 1
  1. 1.Department of Microbiology, New York State College of Agriculture and Life SciencesCornell UniversityIthacaUSA

Personalised recommendations