The Structure and Control of the Pentitol Operons

  • B. S. Hartley
Part of the Monographs in Evolutionary Biology book series (MEBI)


This chapter discusses evolutionary lessons from the structure of the pentitol Operons. The studies described in the last chapter, together with the genetic mapping of Charnetzky and Mortlock (1974) and the parallel work of Reiner (1975; Scangos and Reiner, 1978a) in E. coli C, had made clear that the rbt and dal Operons were probably contiguous, with a gene order rbtK-rbtD-rbtC-dalB-rbtB-dalC-dalD-dalK-, where rbtK encodes d-ribulokinase (DRK); dalK, d-xylulokinase (DXK); rbtD, ribitol dehydrogenase (RDH); and dalD, d-arabitol dehydrogenase (ArDH); and rbtB, rbtC, dalB, and dalC are control loci for the appropriate Operons. Detailed study of the structure of this region might elucidate (1) the nature of events leading to the enzyme superproduction discussed in the previous chapter, (2) the control of the Operons, and (3) potential homologies between the corresponding rbt and dal genes: their arrangement invites speculation about an ancestry arising from an invert gene duplication.


Ribitol Dehydrogenase Aerogenes Strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. F., Ohlendorf, D. H., Takeda, Y., and Matthews, B. W., 1981, Structure of the cro repressor from bacteriophage λ and its interaction with DNA, Nature 290:754–758.PubMedCrossRefGoogle Scholar
  2. Bahramian, M. B., and Hartley, B. S., 1980, A switch from translational control to transcriptional control of protein synthesis in mid-exponential growth phase of bacterial cultures, Eur. J. Biochem. 110:507–519.PubMedCrossRefGoogle Scholar
  3. Bahramian, M. B., and Hartley, B. S., 1982, Ribitol dehydrogenase mRNA from an enzyme superproducer strain of K. aerogenes, Eur. J. Biochem. 122:271–279.PubMedCrossRefGoogle Scholar
  4. Bahramian, M. B., Loviny, T., and Hartley, B. S., 1982, Chemical and biological stability in vivo of ribitol dehydrogenase mRNA from an enzyme superproducer strain of K. aerogenes, Eur. J. Biochem. 122:279–282.CrossRefGoogle Scholar
  5. Bailey, J. M., and Davidson, N., 1976, Methylmercury as a reversible denaturing agent for agarose gel electrophoresis, Anal. Biochem. 70:75–85.PubMedCrossRefGoogle Scholar
  6. Bidwell, K., and Landy, A., 1979, Structural features of λ site-specific recombination at a secondary att site in gal/T, Cell 16:397–406.PubMedCrossRefGoogle Scholar
  7. Bolivar, F., Rodriguez, R. L., Betlach, M. C., and Boyer, H. W., 1977, Construction and characterization of new cloning vehicles I. Ampicillin-resistant derivatives of the plasmid pMB9, Gene 2:75–93.PubMedCrossRefGoogle Scholar
  8. Burleigh, B. D., Rigby, P. W. J., and Hartley, B. S., 1974, A comparison of wild-type and mutant ribitol dehydrogenases from K. aerogenes, Biochem. J. 143:341–352.PubMedGoogle Scholar
  9. Campbell, A. M., 1962, Episomes, Adv. Genet. 11:101–145.CrossRefGoogle Scholar
  10. Catterall, J. F., and Welker, N. E., 1977, Isolation and properties of a thermostable restriction endonuclease (Endo R. Bst 1503), J. Bacteriol. 129:1110–1120.PubMedGoogle Scholar
  11. Charnetzky, W. T., and Mortlock, R. P., 1974, Close genetic linkage of the determinants of the ribitol and d-arabitol catabolic pathways in K. aerogenes, J. Bacteriol. 119:176–182.PubMedGoogle Scholar
  12. Chou, P. Y., and Fasman, G. D., 1974, Prediction of protein conformation, Biochemistry 13:222–245.PubMedCrossRefGoogle Scholar
  13. Christie, G. E., and Platt, T., 1979, A secondary attachment site for bacteriophage λ in trp C of E. coli, Cell 16:407–413.PubMedCrossRefGoogle Scholar
  14. Cleland, W. W., 1963, The kinetics of enzyme-catalysed reactions with two or more sub-strates or products: I. Nomenclature and rate equations, Biochim. Biophys. Acta 67:104–137.PubMedCrossRefGoogle Scholar
  15. Cowie, D. B., Spiegelman, S., Roberts, R. B., and Duerksen, J. D., 1961, Ribosome-bound β-galactosidase, Proc. Natl. Acad. Sci. USA 47:114–122.PubMedCrossRefGoogle Scholar
  16. Csordas-Toth, E., Boros, I., and Venetianer, P., 1979, Nucleotide sequence of a secondary attachment site for bacteriophage lambda on the E. coli chromosome, Nucleic Acids Res. 7:1335–1341.PubMedCrossRefGoogle Scholar
  17. David, P. J., Loviny, T., and Hartley, B. S., 1984, Molecular structure of a gene duplication in K. aerogenes, (in preparation).Google Scholar
  18. Dothie, J. M., Giglio, J. R., Moore, C. H., Taylor, S. S., and Hartley, B. S., 1984, Ribitol dehydrogenase from K. aerogenese: Sequences and properties of wild-type and mutant strains, Biochem. J. (submitted).Google Scholar
  19. Edlund, T., and Normark, S., 1981, Recombination between short DNA homologies causes tandem duplication, Nature 292:269–271.PubMedCrossRefGoogle Scholar
  20. Farabaugh, P. J., Schmeissner, U., Hofer, M., and Miller, J. H., 1978, Genetic studies of the lac repressor. VII: On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli, J. Mol. Biol. 126:847–863.PubMedCrossRefGoogle Scholar
  21. Gicquel-Sanzey, B., and Cossart, P., 1982, Homologies between different procaryotic DNA-binding regulatory proteins and between their sites of action, EMBO J. 1:591–595.PubMedGoogle Scholar
  22. Godson, G. N., 1976, A technique of rapid lysis for the preparation of E. coli polyribosomes, Meth. Enzymol. 12A:503–516.Google Scholar
  23. Godson, G. N., and Sinsheimer, R. L., 1967, Use of brij lysis as a general method to prepare polyribosomes from Escherichia coli, Biochim. Biophys. Acta 149:489–495.PubMedGoogle Scholar
  24. Guerrini, F., 1969, On the asymmetry of λ integration sites, J. Mol. Biol. 46:523–542.PubMedCrossRefGoogle Scholar
  25. Gunsalus, R. P., and Yanofsky, C., 1980, Nucleotide sequence and expression of Escherichia coli trp R, the structural gene for the trp aporepressor, Proc. Natl. Acad. Sci. USA 77:7117–7121.PubMedCrossRefGoogle Scholar
  26. Haggerty, D. M., and Schleif, R. F., 1976, Location in bacteriophage lambda DNA of cleavage sites of the site-specific endonuclease from Bacillus amyloliquefaciens H, J. Virol. 18:659–663.PubMedGoogle Scholar
  27. Hamlin, J., and Zabin, I., 1972, β-Galactosidase: Immunological activity of ribosome-bound, growing, Polypeptide chains, Proc. Natl. Acad. Sci. USA 69:412–416.PubMedCrossRefGoogle Scholar
  28. Kamp, D., Kahmann, R., Zipser, D., and Roberts, R. J., 1977, Mapping of restriction sites in the attachment site region of bacteriophage lambda, Mol. Gen. Genet. 154:231–248.PubMedCrossRefGoogle Scholar
  29. Knott, T. J., 1982, The d-Arabitol Operon of Klebsiella aerogenes, Ph.D. Thesis, University of London.Google Scholar
  30. Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol. 6:147–217.PubMedCrossRefGoogle Scholar
  31. Landy, A., and Ross, W., 1977, Viral integration and excision: Structure of the lambda att sites, Science 197:1147–1160.PubMedCrossRefGoogle Scholar
  32. Lin, E. C. C., 1961, An inducible d-arabitol dehydrogenase from Aerobacter aerogenes, J. Biol. Chem. 236:31–36.PubMedGoogle Scholar
  33. Lindahl, L., Yamamoto, M., Nomura, M., Kirschbaum, J. B., Allet, B., and Rochaix, J.-D., 1977, Mapping of a cluster of genes for components of the transcriptional and translational machineries of Escherichia coli, J. Mol. Biol. 109:23–47.PubMedCrossRefGoogle Scholar
  34. Loviny, T., Neuberger, M. S., and Hartley, B. S., 1981, Sequence of a secondary phage λ attachment site located between the pentitol Operons of K. aerogenes, Biochem. J. 193:631–637.PubMedGoogle Scholar
  35. Loviny, T., Norton, P. M., and Hartley, B. S., 1984, Ribitol dehydrogenase of Klebsiella aerogenes: Sequence of the structural gene, Biochem. J. (submitted).Google Scholar
  36. McKay, D. B., and Steitz, T. A., 1981, Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA, Nature 290:744–749.PubMedCrossRefGoogle Scholar
  37. Maxam, A., and Gilbert, W., 1977, A new method for sequencing DNA, Proc. Natl. Acad. Sci. USA 74:560–564.PubMedCrossRefGoogle Scholar
  38. Messing, J., and Vieira, J., 1982, A new pair of M13 vectors for selecting either DNA strand of double digest restriction fragments, Gene 19:269–276.PubMedCrossRefGoogle Scholar
  39. Messing, J., Crea, R., and Seeburg, P. H., 1981, A system for shotgun DNA sequencing, Nucleic Acids Res. 9:309–321.PubMedCrossRefGoogle Scholar
  40. Miller, H. I., and Friedman, D.I., 1967, in: DNA Insertion Elements, Plasmids and Episomes (A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 349–356.Google Scholar
  41. Morris, H. R., Williams, D. H., Midwinter, G. G., and Hartley, B. S., 1974, A mass-spectrometric sequence study of the enzyme ribitol dehydrogenase from Klebsiella aerogenes, Biochem. J. 141:701–713.PubMedGoogle Scholar
  42. Muller-Hill, B., 1975, Lac repressor and lac operator, Prog. Biophys. Mol. Biol. 30:227–252.PubMedCrossRefGoogle Scholar
  43. Neuberger, M. S., and Hartley, B. S., 1979, Investigations into the K. aerogenes pentitol operons using specialised transducing phages λp rbtand λp rbt dal, J. Mol. Biol. 132:435–470.PubMedCrossRefGoogle Scholar
  44. Neuberger, M. S., and Hartley, B. S., 1981, Structure of an experimentally evolved gene duplication in a mutant of Klebsiella aerogenes, J. Gen. Microbiol. 122:181–191.PubMedGoogle Scholar
  45. Neuberger, M. S., Patterson, R. A., and Hartley, B. S., 1979, Purification and properties of K. aerogenes d-arabitol dehydrogenase, Biochem. J. 183:31–42.PubMedGoogle Scholar
  46. Neuberger, M. S., Hartley, B. S., and Walker, J. E., 1981, Purification and properties of d-ribulokinase and d-xylulokinase from K. aerogenes, Biochem. J. 193:513–524.PubMedGoogle Scholar
  47. Pabo, C. O., and Lewis, M., 1982, The operator-binding domain of λ repressor: Structure and DNA recognition, Nature 298:443–447.PubMedCrossRefGoogle Scholar
  48. Parkinson, J. S., and Huskey, R. J., 1971, Deletion mutants of bacteriophage lambda I: Isolation and initial characterization, J. Mol. Biol. 56:369–384.PubMedCrossRefGoogle Scholar
  49. Pribnow, D., 1975, Nucleotide sequence of an RNA Polymerase binding site at an early T7 promoter, Proc. Nail. Acad. Sci. USA 72:784–788.CrossRefGoogle Scholar
  50. Reiner, A. M., 1975, Genes for ribitol and d-arabitol metabolism in E. coli: Their loci in C strains and absence in K-12 and B strains, J. Bacteriol. 123:530–536.PubMedGoogle Scholar
  51. Robinson, L. H., and Landy, A., 1977, HindII, HindIII, and HpaI restriction fragment maps of bacteriophage λ DNA, Gene 2:1–31.PubMedCrossRefGoogle Scholar
  52. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463–5467.PubMedCrossRefGoogle Scholar
  53. Scangos, G. A., and Reiner, A. M., 1978a, Ribitol and d-arabitol metabolism in E. coli, J. Bacteriol. 134:492–500.PubMedGoogle Scholar
  54. Scangos, G. A., and Reiner, A. M., 1978b, Acquisition of ability to utilise xylitol: Disadvantages of a constitutive catabolic pathway in E. coli, J. Bacteriol. 134:501–505.PubMedGoogle Scholar
  55. Schechter, I., 1974, Use of antibodies for the isolation of biologically pure messenger ribonucleic acid from fully functional eucaryotic cells, Biochemistry 13:1875–1885.PubMedCrossRefGoogle Scholar
  56. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1972, Prophage lambda at unusual chromosomal locations 1: Location of the secondary attachment sites and the properties of the lysogens, J. Mol. Biol. 63:483–503.PubMedCrossRefGoogle Scholar
  57. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1973, Prophage lambda at unusual chromosomal locations II. Mutations induced by bacteriophage lambda in Escherichia coli K 12, J. Mol. Biol. 80:297–314.PubMedCrossRefGoogle Scholar
  58. Shine, J., and Dalgarno, L., 1974, The 3′-terminal sequence of E. coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. USA 71:1342–1346.PubMedCrossRefGoogle Scholar
  59. Siebenlist, U., Simpson, R. B., and Gilbert, W., 1980, E. coli RNA Polymerase interacts homologously with two different promoters, Cell 20:269–281.PubMedCrossRefGoogle Scholar
  60. Southern, E. M., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98:503–517.PubMedCrossRefGoogle Scholar
  61. Sutcliffe, J. G., 1978, pBR322 restriction map derived from the DNA sequence: Accurate DNA size markers up to 4361 nucleotide pairs long, Nucleic Acids Res. 5:2721–2728.PubMedCrossRefGoogle Scholar
  62. Thomas, M., and Davis, R. W., 1975, Studies on the cleavage of bacteriophage lambda DNA with EcoRI restriction endonuclease, J. Mol. Biol. 91:315–328.PubMedCrossRefGoogle Scholar
  63. Weber, I. T., McKay, D. B., and Steitz, T. A., 1982, Two helix DNA binding motif of CAP found in lac repressor and gal repressor, Nucleic Acids Res. 10:5085–5102.PubMedCrossRefGoogle Scholar
  64. Williams, J. G. K., Wulff, D. L., and Nash, H. R., 1977, in: DNA Insertion Elements, Plasmids and Episomes (R. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), Cold Spring Harbor Laboratory, New York, pp. 357–361.Google Scholar
  65. Williamson, A. R., and Askonas, B. A., 1967, Biosynthesis of Immunoglobulins: The separate classes of polyribosomes synthesizing heavy and light chains, J. Mol. Biol. 23:201–216.PubMedCrossRefGoogle Scholar
  66. Willmund, R., and Kneser, H., 1973, Different binding of RNA Polymerase to individual promoters, Mol. Gen. Genet. 126 165–175.PubMedCrossRefGoogle Scholar
  67. Wilson, B. L., and Mortlock, R. P., 1973, Regulation of d-xylose and d-arabitol catabolism by Aerobacter aerogenes, J. Bacterol. 113:1404–1411.Google Scholar
  68. Wu, T. T., Lin, E. C. C., and Tanaka, S., 1968, utants of Aerobacter aerogenes capable of using xylitol as a novel carbon source, J. Bacteriol. 96:447–456.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • B. S. Hartley
    • 1
  1. 1.Department of BiochemistryImperial College of Science and TechnologyLondonEngland

Personalised recommendations