Advertisement

Arrangement and Rearrangement of Bacterial Genomes

  • Monica Riley
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

In the preceding chapters, experimental systems have been described in which mechanisms of evolution of bacterial genes by point mutation have been fruitfully studied. In this chapter, the focus will be on rearrangements, some on a small scale, occurring within genes, and others on a large scale, causing gross chromosomal rearrangements of the whole bacterial genome. On the whole, less is known about the molecular events of chromosome rearrangement than is known about point mutations, and even less is known about the pressures for stabilization and destabilization of genome structure. Occurrences of large-scale changes in the genome have no doubt played important roles in evolution. In this chapter progress in understanding the molecular mechanisms of rearrangement and the mechanisms of resistance to change will be summarized with emphasis on experiments that have been done with Escherichia coli and its close relatives.

Keywords

Gene Pair Bacterial Genome Tandem Duplication Inverted Repeat Sequence Illegitimate Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abou-Sabé, M., 1982, Evolution of the D-ribose Operon of Escherichia coli B/r, J. Bacteriol. 150:762–769.PubMedGoogle Scholar
  2. An, G., and Frisen, J. D., 1980, The nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli, Gene 12:33–39.PubMedCrossRefGoogle Scholar
  3. Anagnostopoulos, C., 1976, Genetic analysis of Bacillus subtilis strains carrying chromosomal rearrangements, in: Modern Trends in Bacterial Transformation and Transfection (A. Portolés, R. López, and M. Espinosa, eds.), Elsevier/North-Holland Biomedial Press, Amsterdam, pp. 211–230.Google Scholar
  4. Anderson, R. P., and Roth, J. R., 1977, Tandem genetic duplications in phage and bacteria, Annu. Rev. Microbiol. 31:473–505.PubMedCrossRefGoogle Scholar
  5. Bachmann, B. J., and Low, K. B., 1976, Recalibrated linkage map of Escherichia coli K-12, Bacteriol. Rev. 40:116–167.PubMedGoogle Scholar
  6. Bachmann, B. J., and Low K. B., 1980, Linkage map of Escherichia coli K-12, edition 6, Microbiol. Rev. 44:1–56.PubMedGoogle Scholar
  7. Bennett, P. M., and Richmond, M. H., 1978, Plasmids and their possible influence on bacterial evolution, in: The Bacteria, Vol. VI (L. N. Ornston and J. R. Sokatch, eds.), Academic Press, New York, pp. 1–69.Google Scholar
  8. Berg, C. M., and Curtiss, R., III, 1967, Transposition derivatives of an Hfr strain of Escherichia coli K-12, Genetics 56:503–525.PubMedGoogle Scholar
  9. Capage, M., and Hill, C. W., 1979, Preferential unequal recombination in the glyS region of the Escherichia coli chromosome, J. Mol. Biol. 127:73–87.PubMedCrossRefGoogle Scholar
  10. Casadaban, M. J., 1976, Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and mu, J. Mol. Biol. 104:541–555.PubMedCrossRefGoogle Scholar
  11. Casse, F., Pascal, M.-C., and Chippaux, M., 1973, Comparison between the chromosomal maps of E. coli and S. typhimurium. Length of the inverted segment in the trp region, Mol. Gen. Genet. 124:253–257.PubMedCrossRefGoogle Scholar
  12. Charlier, D., Crabeel, M., Cunin, R., and Glansdorff, N., 1979, Tandem and inverted repeats of arginine genes in Escherichia coli, Mol. Gen. Genet. 174:75–88.PubMedCrossRefGoogle Scholar
  13. Chumley, F. G., and Roth, J. R., 1980, Rearrangement of the bacterial chromosome using Tn10 as a region of homology, Genetics 94:1–14.Google Scholar
  14. Cornells, G., 1981, Sequence relationships between plasmids carrying genes for lactose utilization, J. Gen. Microbiol. 124:91–97.Google Scholar
  15. Cornells, G., Ghosal, D., and Saedler, H., 1978, Tn951: A new transposon carrying a lactose Operon, Mol. Gen. Genet. 160:215–224.CrossRefGoogle Scholar
  16. Cornells, G., Sommer, H., and Saedler, H., 1981, Transposon Tn951 is defective and related to Tn3, Mol. Gen. Genet. 184:241–248.Google Scholar
  17. Crawford, I. P., Nichols, B. P., and Yanofsky, C., 1980, Nucleotide sequence of the trpB gene in Escherichia coli and Salmonella typhimurium, J. Mol. Biol. 142:489–502.PubMedCrossRefGoogle Scholar
  18. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Bolch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of procaryotes, Science 209:457–463.PubMedCrossRefGoogle Scholar
  19. Fultz, P.N., Kwoh, D. Y., and Kemper, J., 1979, Salmonella typhimurium newD and Escherichia coli leuC genes code for a functional isopropylamalate isomerase in Salmonella typhimurium-Escherichia coli hybrids, J. Bacteriol. 137:1253–1262.PubMedGoogle Scholar
  20. Gigot, D., Glansdorff, N., Legrain, C., Piérard, A., Stalon, V., Königsberg, W., Caplier, I., Strosberg, A. D., and Herveé, G., 1977, Comparison of the N-terminal sequences of aspartate and Ornithine carbamoyltransferases of Escherichia coli, FEBS Lett. 81:28–32.PubMedCrossRefGoogle Scholar
  21. Gigot, D., Caplier, I., Strosberg, D., Piérard, A., and Glansdorff, N., 1978, Amino-proximal sequences of the argF and argI Ornithine carbamoyltransferases from Escherichia coli K-12, Arch, Int. Physiol. Biochim. 86:913–915.Google Scholar
  22. Guiso, N., and Ullman, A., 1976, Expression and regulation of lactose genes carried by plasmids, J. Bacteriol. 127:691–697.PubMedGoogle Scholar
  23. Higgins, C. F., and Ames, G. F.-L., 1981, Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: Complete nucleotide sequences, Proc. Natl. Acad. Sci. USA 78:6038–6042.PubMedCrossRefGoogle Scholar
  24. Hill, C. W., and Harnish, B. W., 1981, Inversions between ribosomal RNA genes of Escherichia coli, Proc. Natl. Acad. Sci. USA 78:7069–7072.PubMedCrossRefGoogle Scholar
  25. Hill, C. W., and Harnish, B. W., 1982, Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli, J. Bacteriol. 149:449–457.PubMedGoogle Scholar
  26. Hill C. W., Grafstrom, R. H., Harnish, B. W., and Hillman, B. S., 1977, Tandem duplications resulting from recombination between ribosomal RNA genes in Escherichia coli, J. Mol. Biol. 116:407–428.PubMedCrossRefGoogle Scholar
  27. Hooykaas, P. J. J., Peerbolte, R., Regensburg-Tuink, A. J. G., de Vries, P., and Schilpe-roort, R. A., 1982, A chromosomal linkage map of Agrobacterium tumefaciens and a comparison with the maps of Rhizobium SPP, Mol. Gen. Genet. 188:12–17.CrossRefGoogle Scholar
  28. Hu, M., and Deonier, R., 1981, Mapping of IS1 elements flanking the argF gene region on the Escherichia coli K-12 chromosome, Mol. Gen. Genet. 186:82–86.Google Scholar
  29. Lino, T., and Kutsukake, K., 1980, Trans-acting genes of bacteriophages P1and mu mediate inversion of a specific DNA segment involved in flagellar phase variation of Salmonella, Cold Spring Harbor Symp. Quant. Biol. 45:11–16.Google Scholar
  30. Inokuchi, K., Mutoh, N., Matsuyama, S., and Mizushima, S., 1982, Primary structure of the ompF gene that codes for a major outer membrane protein of Escherichia coli K-12, Nucleic Acids Res. 10:6957–6968.PubMedCrossRefGoogle Scholar
  31. Jackson, E. N., and Yanofsky, C., 1973, Duplication-translocations of tryptophan operon genes in Escherichia coli, J. Bacteriol. 116:33–40.PubMedGoogle Scholar
  32. Kamp, D., and Kahmann, R., 1981, The relationship of two invertible segments in bacteriophage mu and Salmonella typhimurium DNA, Mol. Gen. Genet. 184:564–566.PubMedCrossRefGoogle Scholar
  33. Kamp, D., Chow, L. T., Broker, T. R., Kwoh, D., Zipser, D., and Kahmann, R., 1978, Site-specific recombination in phage mu, Cold Spring Harbor Symp. Quant. Biol. 43:1159–1167.CrossRefGoogle Scholar
  34. Kaplan, J. B., and Nichols, B. P., 1983, Nucleotide sequence of Escherichia coli pabA and its evolutionary relationship to trp(G)D, J. Mol. Biol. 168:451–468.PubMedCrossRefGoogle Scholar
  35. Kikuchi, A., and Gorini, L., 1975, Similarity of genes argF and argI, Nature 256:621–624.PubMedCrossRefGoogle Scholar
  36. Kemper, J., 1974, Evolution of a new gene substituting for the leuD gene of Salmonella typhimurium: Characterization of supQ mutations, J. Bacteriol. 119:937–951.PubMedGoogle Scholar
  37. Kennedy, K. E., Iida, S., Meyer, J., Stalhammar-Carlemalm, M., Heistand-Nauer, R., and Arber, W., 1983, Genome fusion mediated by the site-specific DNA inversion system of bacteriophage P1, Mol. Gen. Genet. 189:413–421.PubMedCrossRefGoogle Scholar
  38. Konrad, E. B., 1977, Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications, J. Bacteriol. 130:167–172.PubMedGoogle Scholar
  39. Kostriken, R., Morita, C., and Heffron, F., 1981, Transposon Tn3 encodes a site specific recombination system: Identification of essential sequences, genes and actual site of recombination, Proc. Natl. Acad. Sci. USA 78:4041–4045.PubMedCrossRefGoogle Scholar
  40. Lampel, K. A., and Riley, M., 1982, Discontinuity of homology of Escherichia coli and Salmonella typhimurium DNA in the lac region, Mol. Gen. Genet. 186:82–86.PubMedCrossRefGoogle Scholar
  41. LaVerne, L. S., and Ray, D. S., 1980, Site-specific integration of an F’ lac pro factor in the region of the replication origin (oriC) of E. coli, Mol. Gen. Genet. 179:437–446.PubMedCrossRefGoogle Scholar
  42. Lawther, R. P., Calhoun, D. H., Adams, C. W., Hauser, C. A., Gray, J., and Hatfield, G. W., 1981, Molecular basis of valine resistance in Escherichia coli K-12, Proc. Natl. Acad. Sci. USA 78:922–925.PubMedCrossRefGoogle Scholar
  43. Lehner, A. F., and Hill, C. W., 1980, Involvement of ribosomal ribonucleic acid Operons in Salmonella typhimurium chromosomal rearrangements, J. Bacteriol. 143:492–498.PubMedGoogle Scholar
  44. Link, C. D., and Reiner, A. M., 1982, Inverted repeats surround the ribitol-arabitol genes of E. coli C., Nature 298:94–96.PubMedCrossRefGoogle Scholar
  45. Link, C. D., and Reiner, A. M., 1983, Genotypic exclusion: A novel relationship between the ribitol-arabitol and galactitol genes of E. coli, Mol. Gen. Genet. 189:337–339.PubMedCrossRefGoogle Scholar
  46. Liu, R.-J., Capage, M., and Hill, C. W., 1983, Characterization of two hot spots for the rearrangement of the Escherichia coli chromosome, Abstr. Anna. Meet. Am. Soc. Microbiol., p. 129.Google Scholar
  47. Mazur, B. J., Rice, D., and Hazelkorn, R., 1980, Identification of blue-green algal nitrogen fixation genes by using heterologous DNA hybridization probes, Proc. Natl. Acad. Sci. USA 77:186–190.PubMedCrossRefGoogle Scholar
  48. Mizuno, T., Chou, M.-Y., and Inouye, M., 1983, A comparative study on the genes for three porins of the Escherichia coli outer membrane: DNA sequence of the osmore-gulated ompC gene, J. Biol. Chem. 6932-6940.Google Scholar
  49. Moore, S., Garvin, R., and James, E., 1981, Nucleotide sequence of the argF regulatory region of Escherichia coli K-12, Gene 16:119–132.PubMedCrossRefGoogle Scholar
  50. Nakamura, K., and Inouye, M., 1980, DNA sequence of the Serratia marcescens lipoprotein gene, Proc. Natl. Acad. Sci. USA 77:1369–1373.PubMedCrossRefGoogle Scholar
  51. Neimark, H., and London, J., 1982, Origins of the mycoplasmas: Sterol nonrequiring mycoplasmas evolved from streptococci, J. Bacteriol. 150:1259–1265.PubMedGoogle Scholar
  52. Nichols, B. P., and Yanofsky, C., 1979, Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: An evolutionary comparison, Proc. Natl. Acad. Sci. USA 76:5244–5248.PubMedCrossRefGoogle Scholar
  53. Ohtsubo, E., and Hsu, M.-T., 1978, Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli: Structure of F100, F152, and F8 and mapping of the Escherichia coli chromosomal region fep-supE-gal-att-uvrB, J. Bacteriol. 134:778–794.PubMedGoogle Scholar
  54. Overbeeke, N., Bergmans, H., van Mansfeld, F., and Lugtenberg, B., 1983, Complete nucleotide sequence of phoE, the structural gene for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12, J. Mol. Biol. 163:513–532.PubMedCrossRefGoogle Scholar
  55. Pettijohn, D., 1982, Structure and properties of the bacterial nucleoid, Cell 30:667–669.PubMedCrossRefGoogle Scholar
  56. Piette, J., Cunin, R., Crabeel, M., and Glansdorff, N., 1981, Nucleotide sequences of the control region of the argF gene of Escherichia coli, Arch. Int. Physiol. Biochim. 89:B127–128.CrossRefGoogle Scholar
  57. Piette, J., Cunin, R., Van Vliet, F., Charlier, D., Crabeel, M., Ota, Y., and Glansdorff, N., 1982, Homologous control sites and DNA transcription starts in the related argF and argl genes of Escherichia coli K12, EMBO J. 1:853–857.PubMedGoogle Scholar
  58. Reanny, D. C., 1976, Extra-chromosomal elements as possible agents of adaptation and development, Bacteriol. Rev. 40:552–590.Google Scholar
  59. Reeve, E. C. R., and Braithwaite, J. A., 1974, The lactose system in Klebsiella aerogenes V9A. 4. A comparison of the lac Operons of Klebsiella and Escherichia coli, Genet. Res. 24:323–331.PubMedCrossRefGoogle Scholar
  60. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32:519–560.PubMedCrossRefGoogle Scholar
  61. Riley, M., and Anilionis, A., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Enterobacteria, J. Bacteriol. 143:366–376.PubMedGoogle Scholar
  62. Riley, M., and Glansdorff, N., 1983, Cloning the Escherichia coli K12 argD gene specifying acetylornithine δ-transaminase, Gene 241:335–339.CrossRefGoogle Scholar
  63. Riley, M., Solomon, L., and Zipkas, D., 1978, Relationship between gene function and gene location in Escherichia coli, J. Mol. Evol. 11:47–56.PubMedCrossRefGoogle Scholar
  64. Roof, W. D., Foltermann, K. F., and Wild, J. R., 1982, The organization and regulation of the pyrBI operon in E. coli includes a rho-independent attenuator sequence, Mol Gen. Genet. 187:391–400.PubMedCrossRefGoogle Scholar
  65. Roth, J. R., and Schmid, M., 1981, Arrangement and rearrangement of the bacterial chromosome, Stadler Symp. 13:53–70.Google Scholar
  66. Ruvkin, G. B., and Ausubel, F. M., 1980, Interspecies homology of nitrogenase genes, Proc. Natl. Acad. Sci. USA 77:191–195.CrossRefGoogle Scholar
  67. Sanzey, B., 1979, Modulation of gene expression by drugs affecting deoxyribonucleic acid gyrase, J. Bacteriol. 138: 40–47.PubMedGoogle Scholar
  68. Schmid, M., and Roth, J. R., 1980, Circularization of transduced fragments: A mechanism for adding segments to the bacterial chromosome, Genetics 94:15–29.PubMedGoogle Scholar
  69. Schneider, A.-M. and Anagnostopoulos, C., 1983, Bacillus subtilis strains carrying two non-tandem duplications of the trpE—ilvA and the purB—tre regions of the chromosome, J. Gen. Microbiol. 129:687–701.PubMedGoogle Scholar
  70. Schupp, T., Hutter, R., and Hopwood, D. A., 1975, Genetic recombination in Nocardia mediterranei, J. Bacteriol. 121:128–136.PubMedGoogle Scholar
  71. Scott, T. N., and Simon, M., 1982, Genetic analysis of the mechanism of the Salmonella phase variation site specific recombination system, Mol. Gen. Genet. 188:313–321.PubMedCrossRefGoogle Scholar
  72. Silverman, M., Zieg, J., Mandel, G., and Simon, M., 1980, Analysis of the functional components of the phase variation system, Cold Spring Harbor Symp. Quant. Biol. 45:17–26.CrossRefGoogle Scholar
  73. Simon, M., Zeig, J., Silverman, M., Mandel, G., and Doolittle, R., 1980, Genes whose mission is to jump, Science 209:1370–1374.PubMedCrossRefGoogle Scholar
  74. Smith I., Dubnau, E., Williams, G., Cabane, K., and Paress, P., 1979, Genetics of the translational apparatus in Bacillus subtilis, in: Genetics and Evolution of RNA Polymerase, tRNA and Ribosomes (S. Osawa, H. Ozeki, H. Uchida, and T. Yura, eds.), University of Tokyo Press, Tokyo, pp. 379–405.Google Scholar
  75. Squires, C. H., Defelice, M., Devereux, J., and Calvo, J. M., 1983, Molecular structure of ilvIH and its evolutionary relationship to ilvG in Escherichia coli K12, Nucleic Acids Res. 11:5299–5313.PubMedCrossRefGoogle Scholar
  76. Timmons, M. S., Bogardus, A. M., and Deonier, R. C., 1983, Mapping of chromosomal IS5 elements that mediate type II F-prime plasmid excision in Escherichia coli K-12, J. Bacteriol. 153:395–407.PubMedGoogle Scholar
  77. Turnbough, C. L., Jr., Hicks, K. L., and Donahue, J. P., 1983, Attentuation control of pyrBI operon expression in Escherichia coli K-12, Proc. Natl. Acad. Sci. USA 80:368–372.PubMedCrossRefGoogle Scholar
  78. Vogel, H. J., 1963, Induction of acetylornithine δ-transaminase during pathway-wide repression, in: Informational Macromolecules (H. J. Vogel, V. Bryson, and J. O. Lampen, eds.), Academic Press, New York, pp. 293–300.Google Scholar
  79. Vogel, H. J., and Bacon, D. F., 1966, Gene aggregation: Evidence for a coming together of functionally related, not closely linked genes, Proc. Natl. Acad. Sci. USA 55:1456–1461.PubMedCrossRefGoogle Scholar
  80. Woodward, M. J., and Charles, H. P., 1983, Polymorphism in Escherichia coli: rtl atl and gat regions behave as chromosomal alternatives, J. Gen. Microbiol. 129:75–84.PubMedGoogle Scholar
  81. Yamagata, H., Nakamura, K., and Inouye, M., 1981, Comparison of the lipoprotein gene among the enterobacteriaceae. DNA sequence of Erwinia amylovora lipoprotein gene, J. Biol. Chem. 256:2194–2198.PubMedGoogle Scholar
  82. Yokota, T., Sugisaki, H., Takanami, M., and Kaziro, Y., 1980, The nucleotide sequence of the cloned tufA gene of Escherichia coli, Gene 12:25–31.PubMedCrossRefGoogle Scholar
  83. York, M. K., and Stodolsky, M., 1981, Characterization of P1 argF derivatives from Escherichia coli K12 transduction, Mol. Gen. Genet. 181:230–240.PubMedCrossRefGoogle Scholar
  84. Zakin, M. M., Garel, J.-R., Dautry-Varsat, A., Cohen, G. N., and Boulot, G., 1978, Detection of the homology among proteins by immunochemical cross-reactivity between denatured antigens. Application to the threonine and methionine regulated aspartoki-nases-homoserine-dehydrogenases from Escherichia coli K12, Biochemistry 17:4318–4323.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Monica Riley
    • 1
  1. 1.Department of BiochemistryState University of New York at Stony BrookStony BrookUSA

Personalised recommendations