Native oxides readily grow on the III-V compounds and can form very thick layers. They also often appear at deposited insulator/III-V interfaces where they can strongly affect the electrical properties. The native oxides can be used to seal or passivate the III-V surface or serve as an insulating layer. This chapter provides insight into the mechamisms of oxide growth and how the oxide/III-V interface is formed. Unfortunately, the growth of oxides on the III-Vs is far more complex than on Si. This is caused by a “competition” between the two or more elements of the III-V substrate, for example, one element may diffuse, evaporate, or dissolve faster than the other. Thus, the chemical composition of bulk oxide layer or its interface may be highly nonuniform.


Oxide Layer Thin Solid Film Thermal Oxidation Anodic Oxide Oxide Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pianetta, I. Lindau, C. M. Garner, and W. E. Spicer, Determination of the oxygen binding site on Gaas (110) using soft X-ray photoemission spectroscopy, Phys. Rev. Lett. 35, 1356–1359 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    S. Szpak, Electro-oxidation of gallium arsenide: I. Initial phase of film formation in tartaric acid-water-propylene glycol electrolyte, J. Electrochem. Soc. 124, 107–112 (1977).CrossRefGoogle Scholar
  3. 3.
    W. H. Makky, F. Cabrera, K. M. Geib, and C. W. Wilmsen, Initial stages of anodic oxidation Gaas, J. Vac. Sci. Technol. 21, 417–421 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    W. H. Makky and C. W. Wilmsen, Island stage of Inp anodization, J. Electrochem. Soc. 130, 569–662 (1983).CrossRefGoogle Scholar
  5. 5.
    ASTM index of Powder Diffraction File.Google Scholar
  6. 6.
    G. V. Samsonov, The Oxide Handbook, Plenum Press, New York (1973).CrossRefGoogle Scholar
  7. 7.
    G. P. Schwartz, W. A. Sunder, and J. E. Griffiths, The In-P-O phase diagram: Construction and applications, J. Electrochem. Soc. 129, 1361–1367 (1982).CrossRefGoogle Scholar
  8. 8.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halaw, S. M. Baily, and R. H. Schumm, Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270 - 3 (January 1968).Google Scholar
  9. 9.
    Paul G. Stecher, The Merck Index, 8th ed., Merck & Co., Rahway, N. J. (1968).Google Scholar
  10. 10.
    NBS Circular 539, Vol. 8 (1958).Google Scholar
  11. 11.
    R. C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Cleveland, Ohio (1975).Google Scholar
  12. 12.
    P. J. Harrop and D. S. Campbell, Selection of thin film capacitor dielectrics, Thin Solid Films 2, 273–292 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    J. F. Wager, C. W. Wilmsen, and L. L. Kazmerski, Estimation of the bandgap of InpO4, Appl. Phys. Lett. 42, 589–590 (1983).ADSCrossRefGoogle Scholar
  14. 14.
    D. H. Laughlin, The Correlation between the Composition and Conduction of Inp Anodic Oxides, M. S. Thesis, Colorado State University (1980).Google Scholar
  15. 15.
    W. P. Doyle, Absorption spectra of solids and chemical bonding—I, Arsenic, Antimony and Bismuth trioxides, J. Phys. Chem. Solids 4, 144–147 (1958).ADSCrossRefGoogle Scholar
  16. 16.
    R. L. Weiher, Electrical properties of single crystal indium oxide, J. Appl. Phys. 33, 2834–2839 (1962).ADSCrossRefGoogle Scholar
  17. 17.
    C. D. Thurmond, G. P. Schwartz, G. W. Kammlott, and B. Schwartz, Gaas oxidation and the Ga-As-O equilibrium phase diagram, J. Electrochem. Soc. 127, 1366–1371 (1980).CrossRefGoogle Scholar
  18. 18.
    G. P. Schwartz, G. J. Gaultieri, J. E. Griffiths, C. D. Thurmond, and B. Schwartz, Oxide-substrate and oxide-oxide chemical reactions in thermally annealed films on Gasb, Gaas and GaP, J. Electrochem. Soc. 127, 2488–2499 (1980).CrossRefGoogle Scholar
  19. 19.
    G. P. Schwartz, Analysis of native oxide films and oxide-substrate reactions on III-V semiconductors using thermochemical phase diagrams, Thin Solid Films, 103, 3–16 (1983).ADSCrossRefGoogle Scholar
  20. 20.
    T. P. Smirnova, A. N. Golubenko, N. F. Zackarchals, V. I. Belyi, G. A. Kokovin, and N. A. Valiskeva, Phase composition of thin oxide films on Insb, Thin Solid Films 76, 11–21 (1981).ADSCrossRefGoogle Scholar
  21. 21.
    C. W. Wilmsen, Chemical composition and formation of thermal and anodic oxide/III-V compound semiconductor interfaces, J. Vac. Sci. Technol. 19, 279–289 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    G. P. Schwartz, J. E. Griffiths, and G. J. Gaultieri, Thermal oxidation and native oxide-substrate reactions on InAs and InxGa1-xAs, Thin Solid Films 94, 213–222 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    T. Nakagawa, K. Ohta, and N. Koshizuka, Raman scattering study of unoxidized antimony in anodic oxide-films of Insb, Japan. J. Appl. Phys. 19, L339–L341 (1980).ADSCrossRefGoogle Scholar
  24. 24.
    M. Fathipour, W. H. Makky, J. McLaren, K. M. Geib, and C. W. Wilmsen, High temperature annealing of Inp anodix oxides, J. Vac. Sci. Technol. A 1, 662–666 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    R. P. H. Chang, T. T. Sheng, C. C. Chang, and J. J. Coleman, The effect of interface arsenic domains on the electrical properties of Gaas Mos structures, Appl. Phys. Lett. 33, 341–342 (1978).ADSCrossRefGoogle Scholar
  26. 26.
    D. T. Clark and T. Fok, Surface modification of Inp by plasma techniques using hydrogen and oxygen, Thin Solid Films 78, 271–278 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    R. Glang, in: Handbook of Thin Film Technology (L. I. Maissel and R. Glang, Eds.), pp. 1–16, 1–17, McGraw-Hill, New York (1970).Google Scholar
  28. 28.
    K. K. Kelly, U.S. Bureau of the Mines, Bulletin 383 (1935).Google Scholar
  29. 29.
    R. P. Burns, Systematica of the evaporation coefficients of Al2o3, Ga2o3 and ln2o3, J. Chem. Phys. 44, 3307–3319 (1966).ADSCrossRefGoogle Scholar
  30. 30.
    S. P. Muraka, Thermal oxidation of Gaas, Appl. Phys. Lett. 26, 180–182 (1975).ADSCrossRefGoogle Scholar
  31. 31.
    D. E. Aspnes and A. A. Studna, Chemical etching and cleaning procedures for Si, Ge and some III-V compound semiconductors, Appl. Phys. Lett. 39, 316–318 (1981).Google Scholar
  32. 32.
    B. R. Pruniaux and A. C. Adams, Dependence of barrier height of metal semiconductor contact (Au-Gaas) on thickness of semiconductor surface layer, J. Appl. Phys. 43, 1980–1983 (1972).ADSCrossRefGoogle Scholar
  33. 33.
    F. Lukes, Oxidation of Si and Gaas in air at room temperature, Surf. Sci. 30, 91–100 (1972).ADSCrossRefGoogle Scholar
  34. 34.
    E. Kuphal and H. W. Dinges, Composition and refractive index of Ga1-xAlxAs determined by ellipsometry, J. Appl. Phys. 50, 4196–4200 (1979).ADSCrossRefGoogle Scholar
  35. 35.
    H. Burkhard, H. W. Dinges, and E. Kuphal, Optical Properties of In1-xGaxAsy, Inp, Gaas and GaP determined by ellipsometry, J. Appl. Phys. 53, 655–662 (1982).ADSCrossRefGoogle Scholar
  36. 36.
    A. J. Rosenberg, The oxidation of intermetallic compounds-III, The room-temperature oxidation of AIIIBv compounds, J. Phys. Chem. Solids 14, 175–180 (1960).ADSCrossRefGoogle Scholar
  37. 37.
    B. Schwartz, S. E. Haszko, and D. R. Wonsidler, The influence of dopant concentration on the oxidation os N-type Gaas in H2O, J. Electrochem. Soc. 118, 1229–1231 (1971).CrossRefGoogle Scholar
  38. 38.
    Y. C. M. Yeh and R. J. Stirn, Single crystal and polycrystalline Gaas solar cells using AMos technology, 11th IEEE Photovoltaic Specialist Conference, New York (1975).Google Scholar
  39. 39.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, Effects of water vapor and oxygen excitation on oxidation of Gaas, GaP and Insb surfaces studied by X-ray photoemission, Japan. J. Appl. Phys. 18, 1525–1529 (1979).ADSCrossRefGoogle Scholar
  40. 40.
    J. F. Wager, D. L. Ellsworth, S. M. Goodnick, and C. W. Wilmsen, Composition and thermal stability of thin native oxides on Inp, J. Vac. Sci. Technol. 19, 513–518 (1981).ADSCrossRefGoogle Scholar
  41. 41.
    J. L. Zilko and R. S. Williams, Auger electron spectroscopy study of Gaas substrate cleaning procedures, J. Electrochem. Soc. 129, 406–409 (1982).CrossRefGoogle Scholar
  42. 42.
    I. Shiota, K. Motoya, T. Ohmi, N. Miyamoto, and J. Nishizawa, Auger characterization of chemically etched Gaas surfaces, J. Electrochem. Soc. 124, 155–157 (1977).CrossRefGoogle Scholar
  43. 43.
    P. A. Bertrand, XPS study of chemically etched Gaas and Inp, J. Vac. Sci. Technol. 18, 28–33 (1981).ADSCrossRefGoogle Scholar
  44. 44.
    C. C. Chang, P. H. Citrin, and B. Schwartz, Chemical preparation of Gaas surfaces and their characterization by Auger electron and X-ray photoemission spectroscopies, J. Vac. Sci. Technol. 14, 943–952 (1977).ADSCrossRefGoogle Scholar
  45. 45.
    T. Oda and T. Sugano, Studies on chemically etched silicon, Gallium arsenide, and gallium phosphide surfaces by Auger electron spectroscopy, Japan. J. Appl. Phys. 15, 1317–1327 (1976).ADSCrossRefGoogle Scholar
  46. 46.
    R. P. Vasquez, B. F. Lewis, and F. J. Grunthaner, X-ray photoelectron spectroscopy study of the oxide removal mechanism of Gaas (100) molecular beam epitaxial substrates in situ heating, Appl. Phys. Lett. 42, 293–295 (1983).ADSCrossRefGoogle Scholar
  47. 47.
    R. P. Vasquez, B. F. Lewis, and F. J. Grunthaner, Cleaning chemistry of Gaas (100) and Insb (100) substrates for molecular beam epitaxy, J. Vac. Sci. Technol. B 1, 791–794 (1983).CrossRefGoogle Scholar
  48. 48.
    D. T. Clark, T. Fok, G. G. Roberts, and R. W. Sykes, An investigation by electron spectroscopy for chemical analysis of chemical treatments of the (100) surface of n-type Inp epitaxial layers for Langmuir film ay redeposition, Thin Solid Films 70, 261–283 (1980).ADSCrossRefGoogle Scholar
  49. 49.
    S. Singh, R. S. Williams, L. G. VanUitent, A. Schlierr, I. Camlibel, and W. A. Bonner, Analysis of Inp surface prepared by various cleaning methods, J. Electrochem. Soc. 129, 447–448 (1982).CrossRefGoogle Scholar
  50. 50.
    O. Wada, A. Majerfeld, and P. N. Robson, Inp Schottky contacts with increased barrier height, Solid-State Electron. 25, 381–387 (1982).ADSCrossRefGoogle Scholar
  51. 51.
    O. Wada and A. Majerfeld, Low leakage nearly ideal Schottky barriers to n-Inp, Electron. Lett. 14, 125–126 (1978).Google Scholar
  52. 52.
    C. Michel and J. J. Ehrhardt, Oxidation of (n)-Inp by nitric acid, Electron. Lett. 18, 305–307 (1982).CrossRefGoogle Scholar
  53. 53.
    A. Guivar’H, H. L’Haridon, G. Pelous, G. Hollinger, and P. Pentosa, Chemical cleaning of Inp surfaces: Oxide composition and electrical properties, J. Appl. Phys. (to be published).Google Scholar
  54. 54a.
    B. Schwartz, Preliminary results on the oxidation of Gaas and GaP during chemical etching, J. Electrochem. Soc. 118, 657–658 (1971).CrossRefGoogle Scholar
  55. 54b.
    B. Schwartz and W. J. Sundburg, Oxidation of GaP in an aqueous H2O2 solution, J. Electrochem. Soc. 120, 576–580 (1972).CrossRefGoogle Scholar
  56. 55.
    M. Invishi and B. W. Wessels, Deep level transient spectroscopy of interface and bulk trap states in Inp Mos structures, Thin Solid Films 103, 141–153 (1983).ADSCrossRefGoogle Scholar
  57. 56.
    H. Lim, G. Sagnes, and G. Bastide, A study of the chemical oxide/Inp interface states, J. Appl. Phys. 53, 7450–7453 (1982).ADSCrossRefGoogle Scholar
  58. 57.
    K. Kamura, T. Suzuki, and A. Kunioka, Inp metal-insulator-semiconductor Schottky contacts using surface oxide layers prepared with bromine water, J. Appl. Phys. 51, 4905–4907 (1980).ADSCrossRefGoogle Scholar
  59. 58.
    F. D. Auret, An Aes evaluation of cleaning and etching methods for Insb, J. Electrochem. Soc. 129, 2752–2755 (1982).CrossRefGoogle Scholar
  60. 59.
    K. Navratil, Thermal oxidation of gallium arsenide, Czech. J. Phys. 18, 266–274 (1968).Google Scholar
  61. 60.
    J. F. Wager and C. W. Wilmsen, Thermal oxidation of Inp, J. Appl. Phys. 51, 812–814 (1980).ADSCrossRefGoogle Scholar
  62. 61.
    M. L. Korwin-Pawlowski and E. L. Heasell, Thermal oxide layers on indium antimonide, Phys. Stat. Sol. (a) 27, 339–346 (1975).CrossRefGoogle Scholar
  63. 62.
    T. Hwang, K. M. Geib, C. W. Wilmsen, A. R. Clawson, and D. I. Elder, Thermal oxidation of In0.53Ga0.47As, J. Appl. Phys. (to be published).Google Scholar
  64. 63.
    K. Kato, K. M. Geib, R. G. Gann, P. Brusenback, and C. W. Wilmsen, Thermal oxidation of GaP, J. Vac. Sci. Technol. A2, 588–592 (1984).ADSGoogle Scholar
  65. 64.
    A. S. Grove, Physics and Technology of Semiconductor Devices, Chapter 2, Wiley, New York (1967).Google Scholar
  66. 65.
    A. J. Nelson, Composition, Structure and Growth Kinetics of Thermal Oxides of Inp, M.S. Thesis, Colorado State University (1982).Google Scholar
  67. 66.
    K. Watanabe, M. Hashiba, Y. Hirahota, M. Nishino, and T. Yamashina, Oxide layers on Gaas prepared by thermal, anodic and plasma oxidation: In-depth profiles and annealing effects, Thin Solid Films 56, 63–73 (1979).ADSCrossRefGoogle Scholar
  68. 67.
    C. W. Wilmsen, Oxide layers on III-V compound semiconductors, Thin Solid Films 39, 105–117 (1976).ADSCrossRefGoogle Scholar
  69. 68.
    J. F. Wager and C. W. Wilmsen, Plasma-enhanced chemical vapor deposited Sio2/Inp interface, J. Appl. Phys. 53, 5789–5797 (1982).ADSCrossRefGoogle Scholar
  70. 69.
    A. Nelson, K. Geib, and C. W. Wilmsen, Composition and structure of thermal oxides of indium phosphide, J. Appl. Phys. 54, 4134–4140 (1983).ADSCrossRefGoogle Scholar
  71. 70.
    G. P. Schwartz, W. A. Sander, and J. E. Griffiths, Raman scattering study of the thermal oxidation of Inp, Appl Phys. Lett. 37, 925–927 (1980).Google Scholar
  72. 71.
    J. J. McLaren, A. Nelson, K. Geib, R. Gann, and C. W. Wilmsen, Surface topography of oxides on Inp thermally grown at high temperatures, J. Vac. Sci. Technol. A1, 1486–1490 (1983).ADSCrossRefGoogle Scholar
  73. 72.
    M. Rubenstein, The oxidation of GaP and Gaas, J. Electrochem. Soc. 113, 540–542 (1966).CrossRefGoogle Scholar
  74. 73.
    H. Iwasaki, Y. Mizokawa, R. Nishitani, and S. Nakamura, X-ray photoemission study of the oxidation process of cleaned (110) surface of Gaas, Gap and Insb, Japan. J. Appl. Phys. 17, 1925–1933 (1978).ADSCrossRefGoogle Scholar
  75. 74.
    R. Nishitani, H. Iwasaki, Y. Mizokawa, and S. Nakamura, An XPS analysis of thermally grown oxide film on GaP, Japan. J. Appl Phys. 17, 321–327 (1978).ADSGoogle Scholar
  76. 75.
    A. J. Rosenberg and M. C. Lavine, The oxidation of intermetallic compounds: I. High temperature oxidation of Insb, J. Phys. Chem. 64, 1135–1142 (1960).CrossRefGoogle Scholar
  77. 76.
    A. J. Rosenberg, Oxidation of intermetallic compounds: II. Interrupted oxidation of Insb, J. Phys. Chem. 64, 1143–1150 (1960).CrossRefGoogle Scholar
  78. 77.
    C. W. Wilmsen, Correlation between the composition profile and electrical conductivity of the thermal and anodic oxides of Insb, J. Vac. Sci. Technol. 13, 64–67 (1976).ADSCrossRefGoogle Scholar
  79. 78.
    M. L. Korwin-Pawlawski and E. L. Heasell, Thermal oxide layers on indium antimonide, Phys. Status Solid A 27, 339–346 (1975).ADSCrossRefGoogle Scholar
  80. 79.
    K. Navratil, I. Ohlidal, and F. Lukes, The physical structure of the interface between single-crystal Gaas and its oxide film, Thin Solid Films 56, 163–171 (1979).ADSCrossRefGoogle Scholar
  81. 80.
    G. P. Schwartz, G. J. Gualtieri, G. W. Kammlott, and B. Schwartz, An X-ray photoelec- tron spectroscopy study of native oxides on Gaas, J. Electrochem. Soc. 126, 1737–1749 (1979).CrossRefGoogle Scholar
  82. 81.
    Y. Mizokawa, H. Iwasaki, R. Nishitani, and S. Nakamura, In depth profiles of oxide films on Gaas studied by XPS, Japan. J. Appl Phys. 17, Suppl., 327–333 (1978).Google Scholar
  83. 82.
    K. Loschke, G. Kuhn, H. J. Bitz, and G. Leonhardt, Oxide films and Ambv Halbleiter, Thin Solid Films 48, 229–236 (1978).ADSCrossRefGoogle Scholar
  84. 83.
    R. L. Farrow, R. K. Chang, S. Mroezkawski, and F. H. Pollak, Detection of excess crystalline As and Sb in III-V oxide interfaces by Raman scattering, Appl. Phys. Lett. 31, 768–770 (1977).Google Scholar
  85. 84.
    D. H. Laughlin and C. W. Wilmsen, Thermal oxidation of Inas, Thin Solid Films, 70, 325–332 (1980).ADSCrossRefGoogle Scholar
  86. 85.
    M. Yamaguchi, A. Yamamoto, H. Sagivra, and C. Vemura, Thermal oxidation of Inas and characterization of the oxide film, Thin Solid Films 92, 361–369 (1982).ADSCrossRefGoogle Scholar
  87. 86.
    H. L. Hartnagel, Mos-gate technology on Gaas and other III-V compounds, J. Vac. Sci. Technol. 13, 860–867 (1976).ADSCrossRefGoogle Scholar
  88. 87.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York (1966).Google Scholar
  89. 88.
    B. Schwartz, Gaas surface chemistry: A review, CRC Crit. Rev. Solid-State Sci. 5, 609–624 (1975).CrossRefGoogle Scholar
  90. 89.
    A. Yamamoto, M. Yamaguchi, and C. Vemura, Preparation and electrical properties of an anodic oxide of Inp, J. Electrochem. Soc. 129, 2795–2801 (1982).CrossRefGoogle Scholar
  91. 90.
    L. C. Feldman, J. M. Poate, F. Ermanis, and B. Schwartz, Combined use of helium back-scattering and helium-induced X-rays in the study of anodically grown oxide films on gallium arsenside, Thin Solid Films 19, 81–89 (1973).ADSCrossRefGoogle Scholar
  92. 91.
    K. M. Geib and C. W. Wilmsen, Anodic oxide/Gaas and Inp interface formation, J. Vac. Sci. Technol. 17, 952–957 (1980).ADSCrossRefGoogle Scholar
  93. 92.
    C. W. Wilmsen and R. W. Kee, Analysis of the oxide/semiconductor interface using Auger and ESCA as applied to Inp and Gaas, J. Vac. Sci. Technol. 15, 1513–1517 (1978).ADSCrossRefGoogle Scholar
  94. 93.
    Y. Mizokawa, H. Iwasaki, R. Hishitani, and S. Makamura, Quantitative chemical depth profiles of anodic oxide on Gaas obtained by X-ray photoemission spectroscopy, J. Electrochem. Soc. 126, 1370–1374 (1979).CrossRefGoogle Scholar
  95. 94.
    P. A. Breeze, H. L. Hartnagel, and P. M. A. Sherwood, An investigation of anodically grown films on Gaas using X-ray photoemission spectroscopy, J. Electrochem. Soc. 127, 454–461 (1980).CrossRefGoogle Scholar
  96. 95.
    D. E. Aspnes, G. P. Schwartz, G. J. Gualtieri, A. A. Studna, and B. Schwartz, Optical properties of Gaas and its electrochemically grown anodic oxide from 1.5 to 6.0 eV, J. Electrochem. Soc. 128, 590–597 (1981).CrossRefGoogle Scholar
  97. 96.
    C. J. Maggiore and R. S. Wagner, Ion beam characterization of the Gaas-Gaas oxide interface for plasma and anodic oxides, J. Vac. Sci. Technol. 19, 463–466 (1981).ADSCrossRefGoogle Scholar
  98. 97.
    C. W. Wilmsen and R. W. Kee, Auger analysis of the anodic oxide/Inp interface, J. Vac. Sci. Technol. 14, 953–956 (1977).ADSCrossRefGoogle Scholar
  99. 98.
    D. A. Baglee, D. H. Laughlin, B. T. Moore, B. L. Eastep, D. K. Ferry, and C. W. Wilmsen, Inst. Phys. Conf. Ser. No. 56, Chap. 5 (1980).Google Scholar
  100. 99.
    W. H. Makky, Structural and Electrical Properties of Inp Anodic Oxides, Ph.D. Thesis, Colroado State University (1983).Google Scholar
  101. 100.
    J. M. Poate, T. M. Buck, and B. Schwartz, Rutherford scattering study of the chemical composition of native oxides on gallium phosphide, J. Phys. Chem. Solids 34, 779–786 (1973).ADSCrossRefGoogle Scholar
  102. 101.
    J. M. Poate, P. J. Silverman, and J. Yahalom, The growth and composition of anodic films on GaP, J. Phys. Chem. Solids 34, 1847–1857 (1973).ADSCrossRefGoogle Scholar
  103. 102.
    J. M. Poate, P. J. Silverman, and J. Yahalom, Anodic oxide films on gallium phosphide, J. Electrochem. Soc. 120, 844–845 (1973).CrossRefGoogle Scholar
  104. 103.
    H. J. Bilz, G. Leonhardt, G. Kunn, K. Loschke, and A. Meisel, ESCA—untersuchungen an anodisch oxydierten 3–5 verbindungen, Krist. Technik. 13, 363–368 (1978).Google Scholar
  105. 104.
    D. A. Baglee, D. K. Ferry, C. W. Wilmsen, and H. H. Wieder, Inversion layer transport and properties of oxides on Inas, J. Vac. Sci. Technol. 17, 1032–1036 (1980).ADSCrossRefGoogle Scholar
  106. 105.
    D. A. Baglee, D. H. Laughlin, C. W. Wilmsen, and D. K. Ferry in: The Physics of Mos Insulators (G. Lucovsky, S. T. Pantelides, and F. L. Galeener, eds.) Pergamon Press, New York (1980).Google Scholar
  107. 106.
    J. F. Dewald, The kinetics and mechanism of the formation of anodic films on single crystal Insb, J. Electrochem. Soc. 104, 244–251 (1957).CrossRefGoogle Scholar
  108. 107.
    J. F. Dewald, A theory of the kinetics of formation of anodic films at high fields, J. Electrochem. Soc. 102, 1–6 (1955).CrossRefGoogle Scholar
  109. 108.
    S. M. Spitzer, B. Schwartz, and G. D. Weigle, Preparation and stabilization of anodic oxides on Gaas, J. Electrochem. Soc. 121, 92C (1974).CrossRefGoogle Scholar
  110. 109.
    S. M. Spitzer, B. Schwartz, and G. D. Weigle, Preparation and stabilization of anodic oxides on gallium arsenide, J. Electrochem. Soc. 122, 397–402 (1975).CrossRefGoogle Scholar
  111. 110.
    T. Ishii and B. Jeppsson, Influence of temperature on anodically grown native oxides on gallium arsenide, J. Electrochem. Soc. 124, 1784–1794 (1977).CrossRefGoogle Scholar
  112. 111.
    T. Ishii and B. Jeppsson, Influence of temperature on the structure and properties of an anodized native Gaas oxide, Japan. J. Appl. Phys. 16, 471–474 (1977).CrossRefGoogle Scholar
  113. 112.
    B. L. Weiss and H. L. Hartnagel, Crystallization dynamics of native anodic oxides on Gaas for device applications, Thin Solid Films 56, 143–152 (1979).ADSCrossRefGoogle Scholar
  114. 113.
    G. P. Schwartz, Springer Series in Electrophysics, 7, 22a, Springer-Verlag, New York (1981).Google Scholar
  115. 114.
    A. T. Fromhold, Plasma oxidation, Thin Solid Films 95, 297–308 (1982).ADSCrossRefGoogle Scholar
  116. 115.
    T. Sugano, Oxide film growth on Gaas and silicon substrates of anodization in oxygen plasma and its application to devices and integrated circuit fabrication, Thin Solid Films 72, 9–17 (1980).ADSCrossRefGoogle Scholar
  117. 116.
    K. Kanazawa and Matsunani, Plasma-grown oxide on Inp, Japan. J. Appl. Phys. 20, L211–L213 (1981).ADSCrossRefGoogle Scholar
  118. 117.
    Y. Imai, T. Ishibashi, and M. Ida, Characterization of Inp Mis Schottky diodes prepared by plasma oxidation, J. Electrochem. Soc. 129, 221–224 (1982).CrossRefGoogle Scholar
  119. 118.
    J. F. Wager, W. H. Makky, C. W. Wilmsen, and L. G. Meiners, Oxidation of Inp in a plasma-enhanced chemical vapor deposition reactor, Thin Solid Films 95, 343–350 (1982).ADSCrossRefGoogle Scholar
  120. 119.
    O. Krivanik and S. L. Fortner, HREM imaging and microanalysis of a III-V semi-conductor/oxide interface, Ultramicroscopy, 14, 121–126 (1984).CrossRefGoogle Scholar
  121. 120.
    A. A. Studna and G. J. Gualitieri, Optical properties and water absorption of anodically grown native oxides on Inp, Appl. Phys. Lett. 39, 965–966 (1981).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • C. W. Wilmsen
    • 1
  1. 1.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations