Interfacial Constraints on III-V Compound MIS Devices

  • Derek L. Lile


The first proposed structure for an active semiconductor device appeared in 1930(1) and consisted of a three-terminal element where current control was exercised by means of a metal-semiconductor barrier. This device and a subsequently modified structure employing an aluminum oxide dielectric spacer(2) were unsuccessful because of an inability at that time to prepare an electrically suitable surface. Interestingly, both these devices were proposed using non-Si semiconductors and although they were notable failures initially, they have since, in somewhat modified form, appeared successfully as, what we now call, the Schottky-gate(3) and MOS(4) field-effect transistor, respectively. These devices were not pursued following their initial proposal because of the emergence in 1948 of silicon and germanium junction bipolar transistors(5–7) which, because of their relative ease of fabrication as well as their primary reliance on charge transport remote from a surface, were both fabricated and shown to operate with little developmental delay. Despite their higher-operating-temperature advantage, we now know that Si devices achieved their overwhelming preeminence primarily because of the excellent bulk and interfacial characteristics of silicon’s native thermal oxide, Sio2.(8) The significance of this one fact cannot be overstated when we consider the vast array of devices, circuits, and systems which rely for their operation on the fortuitous circumstance that Si has a good compatible dielectric.


Gallium Arsenide Surface Trap Interface State Density Indium Phosphide Surface State Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Lilienfeld, Method and Apparatus for Controlling Electrical Currents, U.S. Patent No. 1,745,175 (filed 8 October 1926, issued 28 January 1930 ).Google Scholar
  2. 2.
    J. E. Lilienfeld, Device for Controlling Electric Current, U.S. Patent No. 1,900,018 (filed 28 March 1928, issued 7 March 1933 ).Google Scholar
  3. 3.
    C. A. Mead, Schottky barrier gate field-effect transistor, Proc. IEEE 54, 307–308 (1966).Google Scholar
  4. 4.
    S. R. Hofstein and F. P. Heiman, The silicon insulated-gate field-effect transistor, Proc. IEEE 51, 1190–1202 (1963).Google Scholar
  5. 5.
    J. Bardeen and W. H. Brattain, The transistor, a semi-conductor triode, Phys. Rev 74, 230–231 (1948).ADSGoogle Scholar
  6. 6.
    J. Bardeen and W. H. Brattain, Physical principles involved in transistor action, Phys. Rev 75, 1208–1225 (1949).ADSGoogle Scholar
  7. 7.
    W. Shockley, The theory of p-n junctions in semiconductors and p-n junction transistors, BSTJ 28, 435–489 (1949).Google Scholar
  8. 8.
    M. M. Atalla, E. Tannenbaum, and E. J. Scheibner, Stabilization of Silicon Surfaces by Thermally Grown Oxides, BSTL 38, 749–783 (1959).Google Scholar
  9. 9.
    J. T. Mendel, Gaas—A technological catch-22, Microwave J. March 1981, 24–32.Google Scholar
  10. 10.
    D. A. Jenny, The status of transistor research in compound semiconductors. Proc. IRE 46, 959–968 (1958).Google Scholar
  11. 11.
    H. Welker, Ueber Neue Halbleitende Verbindungen, Z. Naturforsch A 7, 744–749 (1952).ADSGoogle Scholar
  12. 12.
    R. Zuleeg and K. Lehovec, High frequency and temperature characteristics of Gaas junction field-effect transistors in the hot electron range, Inst. Phys. Conf. Ser 9, 240–250 (1970).Google Scholar
  13. 13.
    W. Baechtold, K. Daetwyler, T. Forster, T. O. Mohr, W. Walter, and P. Wolf, Si and Gaas 0.5 μm—gate Schottky-barrier field-effect transistors, Electron. Lett. 9, 232–234 (1973).Google Scholar
  14. 14.
    C. W. Wilmsen and S. Szpak, Mos processing for III-V compound semiconductors: Overview and bibliography, Thin Solid Films 46, 17–45 (1977).ADSGoogle Scholar
  15. 15.
    B. L. Sharma, Inorganic dielectric films for III-V compounds, Solid-State Technol 1978, 48–53; 1978, 122–126.Google Scholar
  16. 16.
    For a review of surface effects see A. Many, Y. Goldstein and N. B. Grover, Semiconductor Surfaces, North-Holland, Amsterdam (1971).Google Scholar
  17. 17.
    P. E. Gregory, W. E. Spicer, S. Ciraci, and W. A. Harrison, Surface state band on Gaas (110) face, Appl Phys. Lett 25, 511–514 (1974).ADSGoogle Scholar
  18. 18.
    W. E. Spicer, I. Lindau, P. Pianetta, P. W. Chye, and C. M. Garner, Fundamental studies of III-V surfaces and the (III-V)-oxide interface, Thin Solid Films 56, 1–18 (1979).ADSGoogle Scholar
  19. 19.
    A. R. Clawson, W. Y. Lum, and G. E. McWilliams, Control of substrate degradation in Inp LPE growth with PH3 partial pressure, J. Cryst. Growth 46, 300–303 (1979).ADSGoogle Scholar
  20. 20.
    T. Sawada and H. Hasegawa, Interface state band between Gaas and its anodic native oxide, Thin Solid Films 56, 183–200 (1979).ADSGoogle Scholar
  21. 21.
    R. F. C. Farrow, The evaporation of Inp under Knudsen (equilibrium) and Langmuir (free) evaporation conditions, J. Phys. D 7, 2436–2448 (1974).ADSGoogle Scholar
  22. 22.
    H. Hasegawa and T. Sawada, Electronic properties of interface between Gaas and its anodic native oxide, Proceedings of the Seventh International Vacuum Congress, Vienna, 1977, pp. 549–552.Google Scholar
  23. 23.
    H. Terao, T. Ito, and Y. Sakai, Interface properties of InAs Mis structures and their application to Fet, Elec. Eng. Japan 94, 127–132 (1974).Google Scholar
  24. 24.
    D. L. Lile, D. A. Collins, L. Messick, and A. R. Clawson, A microwave Gaas insulated gate Fet, Appl. Phys. Lett 32, 247–248 (1978).ADSGoogle Scholar
  25. 25.
    D. L. Lile, The effect of surface states on the characteristics of Mis field effect transistors, Solid-State Electron 21, 1199–1207 (1978).ADSGoogle Scholar
  26. 26.
    Y. Shinoda and T. Kobayashi, InGaasP n-channel inversion-mode metal-insulator-semiconductor field-effect transistor with low interface state density, J. Appl. Phys 52, 6386–6394 (1981).ADSGoogle Scholar
  27. 27.
    E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, Ion transport phenomena in insulating films, J. Appl. Phys 36, 1664–1673 (1965).ADSGoogle Scholar
  28. 28.
    C. H. Sequin and M. F. Tompsett, Charge Transfer Devices, Academic Press, New York (1975).Google Scholar
  29. 29.
    For a review of CCDs see J. D. E. Beynon and D. R. Lamb, Charge-Coupled Devices and Their Applications, McGraw-Hill, New York (1980).Google Scholar
  30. 30.
    M. Okamura and T. Kobayashi, Slow current-drift mechanism in n-channel inversion type Inp-MisFET, Japan. J. Appl. Phys 19, 2143–2150 (1980).ADSGoogle Scholar
  31. 31.
    R. P. H. Chang, T. T. Sheng, C. C. Chang, and J. J. Coleman, The effect of interface arsenic domains on the electrical properties of Gaas Mos Structures, Appl. Phys. Lett. 33, 341–342 (1978).ADSGoogle Scholar
  32. 32.
    L. G. Meiners, Capacitance-voltage and surface photovoltage measurements of pyrolytically deposited Sio2 on Inp, Thin Solid Films 56, 201–207 (1979).ADSGoogle Scholar
  33. 33.
    D. L. Lile, Surface photovoltage and internal photoemission at the anodized Insb surface, Surf. Sci. 34, 337–367 (1973).ADSGoogle Scholar
  34. 34.
    L. G. Meiners and H. H. Wieder, Charge-carrier transport in semi-insulating Inp surface layers, Semi-Insulating III-V Materials, Shiva Press, Orpington, England (1980), pp. 198–205.Google Scholar
  35. 35.
    L. G. Meiners, Chapter 4 of present volume.Google Scholar
  36. 36.
    H. Morkoc, T. J. Drummond, and C. M. Stanchak, Schottky barriers and ohmic contacts on n-type Inp based compound semiconductors for microwave Fets, IEEE Trans. Electron. Devices ED-28, 1–5 (1981).Google Scholar
  37. 37.
    D. L. Lile and M. J. Taylor, The effect of interfacial traps on the stability of Mis devices on Inp, in J. Appl. Phys. 54, 260–267 (1983).Google Scholar
  38. 38.
    J. R. Sites and H. H. Wieder, Magnetoresistance mobility profiling of MESFET channels, IEEE Trans. Electron. Devices ED-27, 2277–2281 (1980).Google Scholar
  39. 39.
    K. von Klitzing, Th. Englert, and D. Fritzsche, Transport measurements on Inp inversion metal-oxide semiconductor transistors, J. Appl. Phys. 51, 5893–5897 (1980).ADSGoogle Scholar
  40. 40.
    R. J. Kriegler, T. F. Devenyi, K. D. Chik, and J. Shappir, Determination of surface-state parameters from transfer-loss measurements in CCDs, J. Appl. Phys. 50, 398–401 (1979).ADSGoogle Scholar
  41. 41.
    J. E. Carnes and W. F. Kosonocky, Fast interface-state losses in charge coupled devices, Appl. Phys. Lett. 20, 261–263 (1972).ADSGoogle Scholar
  42. 42.
    B. T. Moore and D. K. Ferry, Scattering of inversion layer electrons by oxide polar mode generated interface phonons, /. Vac. Sci. Technol. 17, 1037–1040 (1980).ADSGoogle Scholar
  43. 43.
    D. A. Baglee, D. K. Ferry, C. W. Wilmsen, and H. H. Wieder, Inversion layer transport and properties of oxides on InAs, J. Vac. Sci. Technol. 17, 1032–1036 (1980).ADSGoogle Scholar
  44. 44.
    D. A. Baglee, D. H. Laughlin, B. T. Moore, B. L. Eastep, D. K. Ferry, and C. W. Wilmsen, Inversion layer transport and insulator properties of the indium-based III-Vs, Inst. Phys. Conf. Ser. 56, 259–265 (1980).Google Scholar
  45. 45.
    Y. Shinoda and T. Kobayashi, Effective electron mobility in inversion-mode Al2o3-Inp Misfets, Solid-State Electron. 25, 1119–1124 (1982).ADSGoogle Scholar
  46. 46.
    Y. Omura, Bulk doping effect on field-effect mobility of Mosfets, Japan. J. Appl. Phys. 20, 1985–1986 (1981).ADSGoogle Scholar
  47. 47.
    T. L. Chu, S. S. Chu, C. L. Lin, Y. C. Tzeng, L. L. Kazmerski and P. J. Ireland, Reduction of grain boundary effects in indium phosphide films by nitridation, J. Electrochem. Soc. 128, 855–859 (1981).Google Scholar
  48. 48.
    A. Heller, Chemical control of recombination at grain boundaries and liquid interfaces: Electrical power and hydrogen generating photoelectrochemical cells, J. Vac. Sci. Technol. 21, 559–561 (1982).ADSGoogle Scholar
  49. 49.
    W. D. Johnston, Jr., A. J. Leamy, B. A. Parkinson, A. Heller, and B. Miller, Effect of ruthenium ions on grain boundaries in gallium arsenide thin film photovoltaic devices, J. Electrochem. Soc. 127, 90–95 (1980).Google Scholar
  50. 50.
    B. A. Parkinson, A. Heller, and B. Miller, Enhanced photoelectrochemical solar energy conversion by gallium arsenide surface modification, Appl. Phys. Lett. 33, 521–523 (1978).ADSGoogle Scholar
  51. 51.
    R. J. Nelson, J. S. Williams, H. J. Leamy, B. Miller, H. C. Casey, Jr., B. A. Parkinson, and A. Heller, Reduction of Gaas surface recombination velocity by chemical treatment, Appl. Phys. Lett. 36, 76–79 (1980).ADSGoogle Scholar
  52. 52.
    K. Ando, A. Yamamoto, and M. Yamaguchi, Surface band bending effects and photoluminescence intensity in n-Inp Schottky and Mis diodes, Japan. J. Appl. Phys. 20, 1107–1112 (1981).ADSGoogle Scholar
  53. 53.
    Y. Hirota, M. Okamura, E. Yamaguchi, T. Nishioka, Y. Shinoda, and T. Kobayashi, Surface controlled Inp-Mis (metal-insulator-semiconductor) triodes, J. Appl. Phys. 52, 3498–3503 (1981).ADSGoogle Scholar
  54. 54.
    C. N. Berglund, Electroluminescence using Gaas Mis structures, Appl Phys. Lett. 9, 441–444 (1966).ADSGoogle Scholar
  55. 55.
    J. Stannard and R. L. Henry, Minority-carrier generation in n-Inp/Sio2 capacitors, Appl. Phys. Lett. 35, 86–88 (1979).ADSGoogle Scholar
  56. 56.
    P. N. Favennec, M. LeContellec, H. L’Haridon, G. P. Pelous, and J. Richard, Al/Al2O3/Inp Mis structures, Appl. Phys. Lett. 34, 807–808 (1979).ADSGoogle Scholar
  57. 57.
    K. P. Pande, Y-S. Hsu, J. M. Barrego, and S. K. Ghandi, Grain boundary edge passivation of Gaas films by selective anodization, Appl. Phys. Lett. 33, 717–719 (1978).ADSGoogle Scholar
  58. 58.
    A. Zylbersztejn, G. Bert, and G. Nuzillat, Hole traps and their effects in Gaas Mesfets, Inst. Phys. Conf. Ser. 45, 315–325 (1979).Google Scholar
  59. 59.
    C. W. Wilmsen, Chemical composition and formation of thermal and anodic oxide/ III-V compound semiconductor interfaces, J. Vac. Sci. Technol. 19, 279–289 (September/October 1981 ).Google Scholar
  60. 60.
    D. L. Lile, D. A. Collins, L. G. Meiners, and M. J. Taylor, A microwave Mis Fet technology on Inp, Inst. Phys. Conf. Ser. 56, 493–502 (1980).Google Scholar
  61. 61.
    H. H. Wieder, Problems and prospects of compound semiconductor field-effect transistors, J. Vac. Sci. Technol. 17, 1009–1018 (1980).ADSGoogle Scholar
  62. 62.
    H. H. Wieder, Materials options for field-effect transistors, J. Vac. Sci. Technol. 18, 827–837 (1981).ADSGoogle Scholar
  63. 63.
    C. A. Liechti, Microwave field-effect transistors—1976, IEEE Trans. Microwave Theory Technol. MTT-24, 279–300 (1976).Google Scholar
  64. 64.
    H. H. Wieder, A. R. Clawson, D. I. Elder, and D. A. Collins, Inversion mode insulated gate Ga0.47In0.53As field-effect transistors, IEEE Trans. Electron. Devices Lett. EDL-2, 73–74 (1981).Google Scholar
  65. 65.
    K. P. Pande and C. C. Shen, The electrical and photovoltaic properties of tunnel metal-oxide-semiconductor devices built on n-Inp substrates, J. Appl. Phys. 53, 749–753 (1982).ADSGoogle Scholar
  66. 66.
    K. R. Gleason, H. B. Dietrich, M. L. Bark, and R. L. Henry, Enhancement-mode ion implanted Inp Fets, Electron. Lett. 14, 643–644 (1978).ADSGoogle Scholar
  67. 67.
    K. Lehovec and R. Zuleeg, I-V characteristics of enhancement-mode Gaas JFets, Inst. Phys. Conf. Ser. 33, 263–274 (1977).Google Scholar
  68. 68.
    K. Yamaguchi and S. Takahashi, Theoretical characterization and high speed performance evaluation of Gaas IGFets, IEEE Trans. Electron. Devices ED-28, 581–587 (1981).Google Scholar
  69. 69.
    F. L. Schuermeyer, R. A. Belt, C. R. Young, and J. M. Blasingame, New structures for charge coupled devices, Proc. IEEE 60, 1444–1445 (1972).Google Scholar
  70. 70.
    D. K. Kinell and M. A. Kiesle, Indium Phosphide Mos Transistor Self-Aligning Gate Process Technology, Presented at the Workshop on Dielectric Systems for the III-V Compounds, San Diego, Calif. (1980).Google Scholar
  71. 71.
    R. M. Hoendervoogt, K. A. Kormos, J. P. Rosbeck, J. R. Toman, and C. B. Burgett, Hybrid Insb focal plane array fabrication, Proc. IEDM 1978, 510–512.Google Scholar
  72. 72.
    R. C. Eden, B. M. Welch, R. Zucca, and S. I. Long, The prospects for ultrahigh-speed VLSI Gaas digital logic, IEEE Trans. Electron. Devices ED-26, 299–317 (1979).Google Scholar
  73. 73.
    G. Nuzillat, G. Bert, T. P. Ngu, and M. Gloanec, Quasi-normally-off MESFET logic for high-performance Gaas ICs, IEEE Trans. Electron. Devices ED-27, 1102–1109 (1980).Google Scholar
  74. 74.
    N. Yokoyama, T. Mimura, and M. Fukuta, Planar Gaas MosFET Integrated Logic, IEEE Trans. Electron. Devices ED-27, 1124–1128 (1980).Google Scholar
  75. 75.
    F. Capasso and G. F. Williams, A proposed hydrogenation/nitridization passivation technique for III-V semiconductor devices, including Ingaas long-wavelength photo-detectors, J. Electrochem. Soc. 129, 821–824 (1982).Google Scholar
  76. 76.
    V. Diadiuk, C. A. Armiento, S. H. Groves, and C. E. Hurwitz, Surface passivation techniques for Inp and InGaasP p-n junction structures, IEEE Trans. Electron. Devices Lett. EDL-1, 177–178 (1980).Google Scholar
  77. 77.
    D. L. Pulfrey, Mis solar cells: A review, IEEE Trans. Electron. Devices ED-25, 1308–1316 (1978).Google Scholar
  78. 78.
    R. Singh and J. Shewchun, A possible explanation for the photovoltaic effect in indium tin oxide on Inp solar cells, J. Appl. Phys. 49 (8), 4588–4591 (1978).ADSGoogle Scholar
  79. 79.
    M. Wolf, Limitations and possibilities for improvement of photovoltaic solar energy converters, Proc. IRE 48, 1246–1263 (1960).Google Scholar
  80. 80.
    L. W. James and R. L. Moon, Gaas Concentrator Solar Cells, Proceedings of the 11th IEEE Photovoltaic Specialist Conference, Scottsdale, Ariz. (1975), pp. 402–408.Google Scholar
  81. 81.
    S. J. Fonash and S. Ashok, On the pinhole model for Mis diodes, Solid-State Electron. 24, 1075–1076 (1981).ADSGoogle Scholar
  82. 82.
    J. Shewchun, R. Singh, and M. A. Green, Theory of metal-insulator-semiconductor solar cells, J. Appl. Phys. 48, 765–770 (1977).ADSGoogle Scholar
  83. 83.
    D. L. Lile and H. H. Wieder, The thin film Mis surface photodiode, Thin Solid Films 13, 15–20 (1972).ADSGoogle Scholar
  84. 84.
    R. D. Thom, F. J. Renda, W. J. Parrish, and T. L. Koch, A monolithic Insb charge- coupled infrared imaging device, Proc. IEDM 1978, 501–504.Google Scholar
  85. 85.
    J. C. Kim, Insb charge-injection device imaging array, IEEE Trans. Electron. Devices ED-25, 232–240 (1978).Google Scholar
  86. 86.
    R. D. Thom, R. E. Eck, J. D. Phillips, and J. B. Scorso, Insb CCDs and other Mis devices for infrared applications, Proc. IEDM 1975, 31–41.Google Scholar
  87. 87.
    J. C. Kim, Insb Mis technology and Cid devices, Proc. IEDM 1975, 1–17.Google Scholar
  88. 88.
    B. Agusta, A 64-bit planar double diffused monolithic memory chip, Int. Solid State Circuits Conf. 1969, 38–39.Google Scholar
  89. 89.
    J. K. Ayling, R. D. Moore, and G. K. Tu, A high-performance monolithic store, Int. Solid State Circuits Conf. 1969, 36–37.Google Scholar
  90. 90.
    For a review see the special issue IEEE Trans. Electron. Devices ED-25 (1978).Google Scholar
  91. 91.
    B. Bayraktaroglu, S. J. Hannah, and H. L. Hartnagel, Stable charge storage of MAOS diodes on Gaas by new anodic oxidation, Electron. Lett. 13, 45–46 (1977).Google Scholar
  92. 92.
    H. Hasegawa and T. Sakai, Anodic oxides on gallium phosphide for optoelectronic device and processing applications, J. Appl. Phys. 49, 4459–4464 (1978).ADSGoogle Scholar
  93. 93.
    H. Becke, R. Hall, and J. White, Gallium arsenide Mos transistors, Solid-State Electron. 8, 813–823 (1965).ADSGoogle Scholar
  94. 94.
    D. Darmagna and J. Reynaud, A Gaas thin-film transistor, Proc. IEEE 54, 2020 (1966).Google Scholar
  95. 95.
    E. J. Charlson and T. H. Weng, Gallium Arsenide Thin Film Transistors, Proceedings of the 20th Annual Southwestern IEEE Conference and Exhibition, 6A1–6A5 (April 1968).Google Scholar
  96. 96.
    T. Ito and Y. Sakai, The Gaas inversion-type Mis transistors, Solid-State Electron. 17, 751–759 (1974).ADSGoogle Scholar
  97. 97.
    T. Mimura and M. Fukuta, Status of the Gaas metal-oxide-semiconductor technology, IEEE Trans. Electron. Devices ED-27, 1147–1155 (1980).Google Scholar
  98. 98.
    B. Bayraktaroglu, E. Kohn, and H. L. Hartnagel, First anodic-oxide Gaas Mosfets based on easy technological processes, Electron. Lett. 12, 53–54 (1976).Google Scholar
  99. 99.
    D. L. Lile, A. R. Clawson, and D. A. Collins, Depletion-mode Gaas MosFET, Appl. Phys. Lett. 29, 207–208 (1976).ADSGoogle Scholar
  100. 100.
    E. Kohn and A. Colquhoun, Enhancement-mode Gaas MosFET on semi-insulating substrate using a self-aligned gate technique, Electron. Lett. 13, 73–74 (1977).ADSGoogle Scholar
  101. 101.
    B. Weiss, E. Kohn, B. Bayraktaroglu, and H. L. Hartnagel, Native oxides on Gaas for Mosfets: Annealing effects and inversion-layer mobilities, Inst. Phys. Conf. Ser. 33, 168–176 (1977).Google Scholar
  102. 102.
    E. Kohn, A. Colquhoun, and H. L. Hartnagel, Gaas enhancement/depletion n-channel MosFET, Solid-State Electron. 21, 877–886 (1978).ADSGoogle Scholar
  103. 103.
    A. Colquhoun, E. Kohn, and H. L. Hartnagel, Improved enhancement/depletion Gaas MosFET using anodic oxide as the gate insulator, IEEE Trans. Electron. Devices ED-25, 375–376 (1978).Google Scholar
  104. 104.
    H. L. Hartnagel, Mos-gate technology on Gaas and other III-V compounds, J. Vac. Sci. Technol. 13, 860–866 (1976).ADSGoogle Scholar
  105. 105.
    T. Sugano, F. Koshiga, K. Yamasaki, and S. Takahashi, IEEE Trans. Electron. Devices ED-27, 449–455 (1980).Google Scholar
  106. 106.
    T. Mimura, N. Yokoyama, Y. Nakayama, and M. Fukuta, Plasma-grown oxide gate Gaas deep depletion MosFET, Japan. J. Appl. Phys. 17 (Suppl. 17-1), 153–157 (1978).Google Scholar
  107. 107.
    N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Low-temperature plasma oxida-tion of Gaas, Appl. Phys. Lett. 32, 58–60 (1978).ADSGoogle Scholar
  108. 108.
    T. Miyazaki, N. Nakamura, A. Doi, and T. Takuyama, n-Channel gallium arsenide MisFET (unpublished).Google Scholar
  109. 109.
    K. Kakimura and Y. Sakai, The properties of Gaas-Al2O3 and Inp-Al2O3 interfaces and the fabrication of Mis field-effect transistors, Thin Solid Films 56, 215–223 (1979).ADSGoogle Scholar
  110. 110.
    L. Messick, A Gaas/Sixoynz Misfet, J. Appl. Phys. 47, 5474–5475 (1976).ADSGoogle Scholar
  111. 111.
    G. D. Bagratishvili, R. B. Dzhanelidze, N. I. Kurdiani, Yu. I. Pashintsev, O. V. Saksaganski, and V. A. Skarikov, Gaas/Ge3N4/Al structures and Mis field-effect transistors based on them, Thin Solid Films 56, 209–213 (1979).ADSGoogle Scholar
  112. 112.
    H. Takagi, G. Kono, and I. Teramoto, Thermal oxide gate Gaas Mosfets, IEEE Trans. Electron. Devices ED-25, 551–552 (1978).Google Scholar
  113. 113.
    N. Yokoyama, T. Mimura, and M. Fukuta, Surface states in an n-Gaas/plasma grown native oxide—A modified deep level transient spectroscopy measurement, Surf. Sci. 86, 826–834 (1979).ADSGoogle Scholar
  114. 114.
    L. Schrader, The influence of the interface states on the dynamic transconductance of Mis-Fets, Solid-State Electron. 20, 671–674 (1977).ADSGoogle Scholar
  115. 115.
    N. Yokoyama, T. Mimura, H. Kusakawa, K. Suyama, and M. Fukuta, Gaas MosFET high-speed logic, IEEE Trans. Microwave Theory Technol. MTT-28, 483–486 (1980).Google Scholar
  116. 116.
    H. Tokuda, Y. Adachi, and T. Ikoma, Microwave capability of 1.5/im-gate Gaas MosFET, Electron. Lett. 13, 761–762 (1977).ADSGoogle Scholar
  117. 117.
    T. Mimura, K. Odani, N. Yokoyama, and M. Fukuta, New structure of enhancement- mode Gaas microwave MosFET, Electron. Lett. 14, 500–502 (1978).ADSGoogle Scholar
  118. 118.
    L. Messick, Power gain and noise of Inp and Gaas insulated gate microwave Fets, Solid-State Electron. 22, 71–76 (1979).ADSGoogle Scholar
  119. 119.
    T. Mimura, K. Odani, N. Yokoyama, Y. Nakayama, and M. Fukuta, Gaas microwave Mosfets, IEEE Trans. Electron. Devices ED-25, 573–579 (1978).Google Scholar
  120. 120.
    T. Miyazaki, N. Nakamura, A. Doi, and T. Tokuyama, Electrical properties of gallium arsenide-insulator interface, Japan. J. Appl. Phys., Suppl. 2, 441–443 (1974).Google Scholar
  121. 121.
    G. Lucovsky and R. S. Bauer, Local atomic order in native III-V oxides, J. Vac. Sci. Technol. 17, 946–951 (1980).ADSGoogle Scholar
  122. 122.
    W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, Unified defect model and beyond, J. Vac. Sci. Technol. 17, 1019–1027 (1980).ADSGoogle Scholar
  123. 123.
    T. Suzuki and M. Ogawa, Degradation of photoluminescence intensity caused by excitation-enhanced oxidation of Gaas surfaces, Appl. Phys. Lett. 31, 473–475 (1977).ADSGoogle Scholar
  124. 124.
    H. Nagai and Y. Noguchi, Ambient gas influence on photoluminescence intensity from Inp and Gaas cleaved surfaces, Appl. Phys. Lett. 33, 312–314 (1978).ADSGoogle Scholar
  125. 125.
    H. Nagai, S. Tohno, and Y. Mizushima, Properties of ambient-enhanced photo-luminescence from Inp and Gaas surfaces, J. Appl. Phys. 50, 5446–5448 (1979).ADSGoogle Scholar
  126. 126.
    M. D. Clark and C. L. Anderson, Improvements in Gaas plasma-deposited silicon nitride interface quality by pre-deposition Gaas surface treatment and post deposition annealing, J. Vac. Sci. Technol. 21, 453–456 (1982).ADSGoogle Scholar
  127. 127.
    R. K. Ahrenkiel, R. S. Wagner, S. Pattillo, D. Dunlavy, T. Jervis, L. L. Kazmerski, and P. J. Ireland, Reduction of fast surface states on p-type Gaas, Appl. Phys. Lett. 40, 700–703 (1982).ADSGoogle Scholar
  128. 128.
    F. L. Schuermeyer, Gaas IGFET digital integrated circuits, IEEE Trans. Electron. Devices ED-28, 541–545 (1981).Google Scholar
  129. 129.
    T. L. Andrade and N. Braslau, Gaas Lossy Gate Dielectric Fet, Presented at the Device Research Conference, Santa Barbara, Calif. (June 1981).Google Scholar
  130. 130.
    B. R. Pruniaux, J. C. North, and A. V. Payer, A semi-insulated gate gallium-arsenide field-effect transistor, IEEE Trans. Electron. Device ED-19, 672–674 (1972).Google Scholar
  131. 131.
    H. M. Macksey, D. W. Shaw, and W. R. Wisseman, Gaas power Fets with semi-insulated gates, Electron. Lett. 12, 192–193 (1976).ADSGoogle Scholar
  132. 132.
    H. C. Casey, Jr., A. Y. Cho, D. V. Lang, E. H. Nicollian, and P. W. Foy, Investigation of heterojunctions for Mis devices with oxygen-doped AlxGa1-xAs on n-type Gaas, J. Appl. Phys. 50, 3484–3491 (1979).ADSGoogle Scholar
  133. 133.
    E. J. Bawolek and B. W. Wessels, ZnSe/Gaas Heterojunctions for Mis Devices, Presented at the Workshop on Dielectric Systems for the III-V Compounds, San Diego, Calif. (June 1982).Google Scholar
  134. 134.
    R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33, 665–667 (1978).ADSGoogle Scholar
  135. 135.
    T. Mimura, K. Joshin, S. Hiyamizu, K. Hikosaka, and M. Abe, High electron mobility transistor logic, Japan. J. Appl. Phys. 20, L598–L600 (1981).ADSGoogle Scholar
  136. 136.
    T. Hotta, H. Sakaki, and H. Ohno, A new AlGaas/Gaas heterojunction Fet with insulated gate structure (MisSFET), Japan. J. Appl. Phys. 21, L122–L124 (1982).ADSGoogle Scholar
  137. 137.
    R. J. Stirn and Y. C. M. Yeh, Technology of Gaas metal-oxide-semiconductor solar cells, IEEE Trans. Electron. Devices ED-24, 476–483 (1977).Google Scholar
  138. 138.
    W. A. Anderson, G. Rajeswaran, V. J. Rao, and M. Thayer, Cr-Mis solar cells using thin epitaxial silicon grown on poly-silicon substrates, IEEE Trans. Electron. Devices Lett. EDL-2, 271–274 (1981).Google Scholar
  139. 139.
    C. W. Wilmsen, The Mos/Inp interface, Crit. Rev. Solid-State Sci. 5, 313–317 (1975).Google Scholar
  140. 140.
    D. L. Lile and D. A. Collins, An Inp Mis diode, Appl. Phys. Lett. 28, 554–556 (1976).ADSGoogle Scholar
  141. 141.
    H. C. Casey, Jr. and E. Buehler, Evidence for low surface recombination velocity on n-type Inp, Appl. Phys. Lett. 30, 247–249 (1977).ADSGoogle Scholar
  142. 142.
    T. Suzuki and M. Ogawa, In Situ measurements of photoluminescence intensities from cleaved (110) surfaces of n-type Inp in a vacuum and gas ambient, Appl. Phys. Lett. 34, 447–449 (1979).Google Scholar
  143. 143.
    L. Messick, D. L. Lile, and A. R. Clawson, A microwave Inp/Sio2 Misfet, Appl. Phys. Lett. 32, 494–495 (1978).ADSGoogle Scholar
  144. 144.
    D. L. Lile and D. A. Collins, The dielectric and interfacial characteristics of Mis structures on Inp and Gaas, Thin Solid Films 56, 225–234 (1979).ADSGoogle Scholar
  145. 145.
    L. G. Meiners, Electrical properties of Sio2 and Si3N4 dielectric layers on Inp, J. Vac. Sci. Technol. 19, 373–379 (1981).ADSGoogle Scholar
  146. 146.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Inversion layers on Inp, J. Vac. Sci. Technol. 16, 1458–1461 (1979).ADSGoogle Scholar
  147. 147.
    D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messick, n-Channel inversion-mode Inp Misfet, Electron. Lett. 14, 657–659 (1978).Google Scholar
  148. 148.
    D. Fritzsche, Interface studies on Inp Mis inversion Fets with Sio2 gate insulation, Inst. Phys. Conf. Ser. 50, 258–265 (1980).Google Scholar
  149. 149.
    D. C. Cameron, L. D. Irving, G. R. Jones, and J. Woodward, Misfet and Mis Diode Behavior of Some Insulator-Inp Systems, Presented at INFOS’81 held at Erlangen (April 1981).Google Scholar
  150. 150.
    T. Kawakami and M. Okamura, Inp/Al2O3 n-channel inversion-mode Misfets using sulphur-diffused source and drain, Electron. Lett. 15, 502–504 (1979).ADSGoogle Scholar
  151. 151.
    T. Kobayashi and Y. Hirota, Inversion-mode Inp Misfet employing phosphorus-nitride gate insulator, Electron. Lett, 18, 180–181 (1982).Google Scholar
  152. 152.
    Y. Hirayama, H. M. Park, F. Koshiga, and T. Sugano, Enhancement type Inp metal-insulator-semiconductor field-effect transistor with plasma anodic aluminium oxide as the gate insulator, Appl. Phys. Lett. 40, 712–713 (1982).ADSGoogle Scholar
  153. 153.
    A. Yamamoto and C. Uemura, Anodic oxide film as gate insulator for Inp Mosfets, Electron. Lett. 18, 63–64 (1982).Google Scholar
  154. 154.
    W. F. Tseng, M. L. Bark, H. B. Dietrich, A. Christou, R. L. Henry, W. A. Schmidt, and N. S. Saks, A virtual self-aligned process for n-channel Inp IGFets (or Misfets), IEEE Trans. Electron. Devices Lett. EDL-2, 299–301 (1981).Google Scholar
  155. 155.
    P. Wolf, Microwave properties of Schottky-barrier field-effect transistors, IBM J. Res. Dev. 14, 125–141 (1970).Google Scholar
  156. 156.
    K. E. Drangeid and R. Sommerhalder, Dynamic performance of Schottky-barrier field-effect transistors, IBM J Res. Dev. 82–94, March (1970).Google Scholar
  157. 157.
    W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos, and H. C. Gatos, Electron mobility and free-carrier absorption in Inp; determination of the compensation ratio, J. Appl. Phys. 51, 2659–2668 (1980).ADSGoogle Scholar
  158. 158.
    A. J. Grant, D. C. Cameron, L. D. Irving, C. E. Greenshalgh, and P. R. Norton, A study of deposited dielectrics and the observation of n-channel MosFET action in Inp, Inst. Phys. Conf. Ser. 50, 266–270 (1980).Google Scholar
  159. 159.
    K. Ohata, T. Itoh, H. Watanabe, T. Mizutani, and Y. Takayama, Investigation on Sio2/Inp Mis systems and enhancement-mode Misfets, Presented at the International Symposium on Gallium Arsenide and Related Compounds, Oiso (1981); Inst. Phys. Conf. Ser. 63, 353–358 (1982).Google Scholar
  160. 160.
    L. Henry, D. Lecrosnier, H. L’Haridan, J. Paugam, G. Pelous, F. Richau, and M. Salvi, n-Channel Misfets on semi-insulating Inp for logic applications, Electron. Lett. 18, 102–103 (1982).Google Scholar
  161. 161.
    D. Fritzsche, Inp-Sio2 Mis structure with reduced interface state density near conduction band, Electron. Lett. 14, 51–52 (1978).Google Scholar
  162. 162.
    Y. Ohmachi and T. Nishioka, Ion implanted n-channel Inp IGFET and its low frequency characteristics, Japan. J. Appl. Phys. 19, 1425–1426 (1980).ADSGoogle Scholar
  163. 163.
    G. G. Roberts, K. P. Pande, and W. A. Barlow, Inp/Langmuir-film Misfet, Solid-State Electron. Devices 2, 169–175 (1978).Google Scholar
  164. 164.
    M. Okamura and T. Kobayashi, Reduction of interface states and fabrication of ¿-channel inversion-type Inp-Misfet, Japan. J. Appl. Phys. 19, 599–602 (1980).ADSGoogle Scholar
  165. 165.
    H. Hasegawa and T. Sawada, Photoionization cross section and threshold of interface states in Gaas and Inp Mos structures, Presented at the International Symposium on Gallium Arsenide and Related Compounds, Oiso (1981); Inst. Phys. Conf Ser. 63, 335–340 (1982).Google Scholar
  166. 166.
    L. G. Meiners, D. L. Lile, and D. A. Collins, Microwave gain from an n-channel enhancement-mode Inp Misfet, Electron. Lett. 15, 578 (1979).ADSGoogle Scholar
  167. 167.
    T. Kawakami and M. Okamura, n-Channel formation on semi-insulating Inp surface by Misfet, Electron. Lett. 15, 743 (1979).Google Scholar
  168. 168.
    S. M. Sze, Physics of Semiconductor Devices, Wiley, New York (1969), pp. 515–524.Google Scholar
  169. 169.
    L. Messick, A D.C. to 16 GHz indium phosphide Misfet, Solid-State Electron. 23, 551–555 (1980).ADSGoogle Scholar
  170. 170.
    K. Ohata, T. Itoh, H. Watanabe, T. Mizutani, and Y. Takayama, Enhancement-mode Inp Misfets with a Cvd-Sio2 gate insulator, Electron. Commun. Tech. Rep. (in Japanese), 81, 59–66 (1982).Google Scholar
  171. 171.
    L. J. Messick, A high-speed monolithic Inp Misfet integrated logic inverter, IEEE Trans. Electron. Devices ED-28, 218–221 (1981).Google Scholar
  172. 172.
    D. K. Kinell, An Indium Phosphide Misfet Integrated Circuit Technology, Presented at the 39th Device Research Conference, Santa Barbara, Calif. (June 1981).Google Scholar
  173. 173.
    M. D. Clark and R. A. Jullens, Indium Phosphide Misfet Integrated Circuits, Presented at the Workshop on Dielectric Systems for the III-V Compounds, San Diego, Calif. (June 1982).Google Scholar
  174. 174.
    H. Sewell and J. C. Anderson, Slow states in Insb/SiOx thin film transistors, Solid-State Electron. 18, 641–649 (1975).ADSGoogle Scholar
  175. 175.
    M. Okamura and T. Kobayashi, Improved interface in inversion-type Inp Misfet by vapor etching technique, Japan. J. Appl. Phys. 19, 2151–2156 (1980).ADSGoogle Scholar
  176. 176.
    T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda, and Y. Hirota, Effect of pyrolytic A1203 deposition temperature on inversion-mode Inp Misfet, J. Appl. Phys. 52, 6434–6436 (1981).ADSGoogle Scholar
  177. 177.
    J. F. Wager and C. W. Wilmsen, Thermal oxidation of Inp, J. Appl. Phys. 51, 812–814 (1980).ADSGoogle Scholar
  178. 178.
    J. D. Langan and C. R. Viswanathan, Characterization of improved Insb interfaces, J. Vac. Sci. Technol. 16, 1474–1477 (1979).ADSGoogle Scholar
  179. 179.
    M. Okamura and T. Kobayashi, Current drifting behavior in Inp Misfet with thermally oxidized Inp/Inp interface, Electron. Lett. 17, 941–942 (1981).Google Scholar
  180. 180.
    V. Montgomery, R. H. Williams, and R. R. Varma, The interaction of chlorine with indium phosphide surfaces, J. Phys. C 11, 1989–2000 (1978).ADSGoogle Scholar
  181. 181.
    H. Huff, S. Kawaji, and H. C. Gatos, Field effect measurements on the A and Bill surfaces of indium antimonide, Surf. Sci. 5, 399–409 (1966).ADSGoogle Scholar
  182. 182.
    Vu Quoc Ho and Takuo Sugano, An improvement of the interface properties of plasma anodized Sio2/Si system for the fabrication of Mosfets, IEEE Trans. Electron. Devices ED-28, 1060–1065 (1981).Google Scholar
  183. 183.
    A. K. Gaind and L. A. Kasprzak, Determination of distributed fixed charge in Cvd-oxide and its virtual elimination by use of HC1, Solid-State Electron. 22, 303–309 (1979).ADSGoogle Scholar
  184. 184.
    L. A. Kasprzak and A. K. Gaind, Near-ideal Si-Sio2 interfaces, IBM J. Res. Dev. 24, 348–352 (1980).Google Scholar
  185. 185.
    D. L. Lile and D. A. Collins, An 8-bit, 4-phase surface channel charge-coupled device on Inp, IEEE Trans. Electron. Devices ED-29, 842–845 (1982).Google Scholar
  186. 186.
    D. L. Lile and D. A. Collins, An insulated-gate charge transfer device on Inp, Appl. Phys. Lett. 37, 552–553 (1980).ADSGoogle Scholar
  187. 187.
    J. L. Davis, Surface states on the (111) surface of indium antimonide, Surf. Sci. 2, 33–39 (1964).ADSGoogle Scholar
  188. 188.
    R. J. Schwartz, R. C. Dockerty, and H. W. Thompson, Jr., Capacitance voltage measurements on n-type InAs Mos diodes, Solid-State Electron. 14, 115–124 (1971).ADSGoogle Scholar
  189. 189.
    L. L. Chang and W. E. Howard, Surface inversion and accumulation of anodized Insb, Appl. Phys. Lett. 7, 210–212 (1965).ADSGoogle Scholar
  190. 190.
    S. Kawaji and Y. Kawaguchi, Galvanomagnetic properties of surface layers in indium arsenide, J. Phys. Soc. Japan 21, Supp. 1966, 336–339.Google Scholar
  191. 191.
    V. L. Frantz, Indium antimonide thin-film transistor, Proc. IEEE 53, 760 (1965).Google Scholar
  192. 192.
    T. P. Brody and H. E. Kunig, A high-gain InAs thin-film transistor, Appl. Phys. Lett. 9, 259–260 (1966).ADSGoogle Scholar
  193. 193.
    I. Spinulescu-Carnaru, Znte and Insb thin-film transistors, Electron. Lett. 3, 268–269 (1967).Google Scholar
  194. 194.
    D. L. Lile and J. C. Anderson, The application of polycrystalline layers of Insb and PbTe to a field-effect transistor, Solid-State Electron. 12, 735–741 (1969).ADSGoogle Scholar
  195. 195.
    F. C. Luo and M. Epstein, Coplanar-electrode thin film Insb transistor, Proc. IEEE 60, 997–999 (1972).Google Scholar
  196. 196.
    H. E. Kunig, Analysis of an InAs thin film transistor, Solid-State Electron, 11, 335–342 (1968).ADSGoogle Scholar
  197. 197.
    H. Baudrand, E. Hamadto, and J. L. Amalric, An experimental and theoretical study of polycrystalline thin film transistor, Solid-State Electron. 24, 1093–1098 (1981).ADSGoogle Scholar
  198. 198.
    A. Heime and H. Pagnia, Influence of the semiconductor-oxide interlayer on the AC-behavior of Insb Mos-capacitors, J. Appl. Phys. 15, 79–84 (1978).ADSGoogle Scholar
  199. 199.
    K. F. Komatsubara, Y. Katayama, N. Kotera, and T. Kobayashi, Transport properties of electrons in inverted Insb surface, J. Vac. Sci. Technol. 6, 572–575 (1969).ADSGoogle Scholar
  200. 200.
    J. D. Thorn, W. J. Parrish, and T. L. Koch, Monolithic Insb CCD Array Technology, Presented at the IRIS Detector Specialty Group Meeting, Minneapolis, Minn. (June 1979).Google Scholar
  201. 201.
    C. W. Fischer, N. Leslie, and A. Etchells, Properties of the native oxide on Gasb, J. Vac. Sci. Technol. 13, 59–63 (1976).ADSGoogle Scholar
  202. 202.
    G. Sixt, K. H. Ziegler, and W. R. Fahrner, Properties of anodic oxide films on n-type Gaas, Gaas0.6P0.4 and GaP, Thin Solid Films, 56, 107–116 (1979).ADSGoogle Scholar
  203. 203.
    G. Weimann, Oxide and interface properties of anodic oxide Mos structures on III-V compound semiconductors, Thin Solid Films 56, 173–182 (1979).ADSGoogle Scholar
  204. 204.
    H. Kressel, Materials for heterojunction devices, Ann. Rev. Mater. Sci. 10, 287 (1980) (edited by R. A. Huggins, R. H. Bube, and D. A. Vermilyea).Google Scholar
  205. 205.
    J. H. Marsh, P. A. Houston, and P. N. Robson, Compositional dependence of the mobility, peak velocity and threshold field in In1-xGaxAsyP1-y, Inst. Phys. Conf. Ser. 56, 621–630 (1980).Google Scholar
  206. 206.
    R. F. Leheny, R. E. Nahory, M. A. Pollack, A. A. Ballman, E. D. Beebe, J. C. DeWinter, and R. J. Martin, An In0 53Ga0 47As junction field-effect transistor, IEEE Trans. Electron. Devices Lett. EDL-1, 110–111 (1980).Google Scholar
  207. 207.
    U. Koren, K. L. Yu, T. R. Chen, N. Bar-Chaim, S. Margalit, and A. Yariv, Monolithic integration of a very low threshold Gainasp laser and metal-insulator-semi- conductor field-effect transistor on semi-insulating Inp, Appl. Phys. Lett. 40, 643–645 (1982).ADSGoogle Scholar
  208. 208.
    T. P. Pearsall, G. Beuchet, J. P. Hirtz, N. Visentin, M. Bonnet, and A. Raizes, Electron and hole mobilities in Ga0;47In0.53As, Inst. Phys. Conf. Ser. 56, 639–649 (1980).Google Scholar
  209. 209.
    M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, Velocity-field characteristics of Ga1-xInxP1-yAs, quaternary alloys, Appl. Phys. Lett. 30, 242–244 (1977).ADSGoogle Scholar
  210. 210.
    S. Bandy, C. Nishimoto, S. Hyder, and C. Hooper, Saturation velocity determination for In0.53Ga0.47As field-effect transistors, Appl. Phys. Lett. 38, 817–819 (1981).ADSGoogle Scholar
  211. 211.
    K. Kajiyama, Y. Mizushima, and S. Sakata, Schottky barrier height of n-InxGa1-xAs diodes, Appl. Phys. Lett. 23, 458–459 (1973).ADSGoogle Scholar
  212. 212.
    H. H. Wieder, Fermi level and surface barriers of GaxIn1-xAs alloys, Appl. Phys. Lett. 38, 170–171 (1981).ADSGoogle Scholar
  213. 213.
    Y. Shinoda, M. Okamura, E. Yamaguchi, and T. Kobayashi, Ingaasp n-channel inversion mode Misfet, Japan. J. Appl. Phys. 19, 2301–2302 (1980).ADSGoogle Scholar
  214. 214.
    H. H. Wieder, Surfaces and dielectric-semiconductor interfaces of some binary and quaternary alloy III-V compounds, Inst. Phys. Conf. Ser. 50, 234–250 (1980).Google Scholar
  215. 215.
    A. S. H. Liao, R. F. Leheny, R. E. Nahory,and J. C. DeWinter, An In0.53Ga0.47As/Si3N4 N-channel inversion mode Misfet, IEEE Trans. Electron. Devices Lett. EDL-2, 288–290 (1981).Google Scholar
  216. 216.
    A. S. H. Liao, R. F. Leheny, R. E. Nahory, J. C. DeWinter, and R. J. Martin, In0.53Ga0.47As/Si3N4 n-Channel and p-Channel Inversion Mode Misfets, Proceedings of the International Electron Devices Meeting, Washington, D.C. (1981), pp. 637–639.Google Scholar
  217. 217.
    A. S. H. Liao, B. Tell, R. F. Leheny, R. E. Nahory, and T. Y. Chang, A Plasma Oxide Insulated Gate In0.53Ga0.47As Fet, Presented at the Workshop on Dielectric Systems for the III-V Compounds, San Diego, Calif. (June 1982).Google Scholar
  218. 218.
    A. S. H. Liao, B. Tell, R. F. Leheny, and T. Y. Chang, In0.53Ga0.47As n-channel native oxide inversion mode field-effect transistor, Appl. Phys. Lett. 41, 280–282 (1982).ADSGoogle Scholar
  219. 219.
    J. Selders and H. Beneking, The In0.53Ga0.47As-Sio2 System and Its Application to n-Channel Inversion Mode Misfets, Presented at the Workshop on Dielectric Systems for the III-V Compounds, San Diego, Calif. (June 1982).Google Scholar
  220. 220.
    R. Kaumanns, J. Selders, and H. Beneking, Surface states and field effect on In0.53Ga0.47As Layers, Presented at the International Symposium on Gallium Arsenide and Related Compounds, Oiso (1981); Inst. Phys. Conf. Ser. 63, 329–334 (1982).Google Scholar
  221. 221.
    P. O’Connor, T. P. Pearsall, K. Y. Cheng, A. Y. Cho, J. C. M. Hwang, and K. Alavi, In0.53Ga0.47As Fets with insulator-assisted Schottky gates, IEEE Trans. Electron. Devices Lett. EDL-3, 64–66 (1982).Google Scholar
  222. 222.
    A. S. H. Liao, B. Tell, R. F. Leheny, R. E. Nahory, J. C. DeWinter, and R. J. Martin, An In0.53Ga0.47As p-channel MosFET with plasma-grown native oxide insulated gate, IEEE Trans. Electron. Devices Lett. EDL-3, 158–160 (1982).Google Scholar
  223. 223.
    B. Tell, R. E. Nahory, R. F. Leheny, and J. C. DeWinter, Native grown plasma oxides and inversion layers on Ingaas, Appl. Phys. Lett. 39, 744–746 (1981).ADSGoogle Scholar
  224. 224.
    Y. Shinoda and T. Kobayashi, High Mobility In1-xGaxASyP1-y Inversion-Mode MisFETS, Proceedings of the Ninth International Symposium on Gaas and Related Compounds, Japan (1981).Google Scholar
  225. 225.
    D. Fritzsche, E. Kuphal, G. Weimann, and H. Burkhard, Cvd and Sputtered Dielectric films on LPE In0.53Ga0.47As interface properties with respect to Mis applications, Presented at the Electronic Materials Conference, Santa Barbara, Calif. (June 1981).Google Scholar
  226. 226.
    P. D. Gardner, S. Y. Narayan, S. Colvin, and Yong-Hoon Yun, Ga0.47In0.53As metal insulator field effect transistors (Misfets) for microwave frequency applications, RCA Rev. 42, 542–556 (1981).Google Scholar
  227. 227.
    R. K. Ahrenkiel, F. Moser, S. L. Lyu, and T. J. Coburn, Electronic properties of anodic oxides grown on Gaas0.6P0.4, Thin Solid Films 56, 117–128 (1979).ADSGoogle Scholar
  228. 228.
    H. Kressel and J. K. Butler, Semiconductor Lasers and Heterojunction Leds, Academic Press, New York (1977).Google Scholar
  229. 229.
    H. W. Becke and J. P. White, Gallium arsenide Fets outperform conventional silicon Mos devices, Electronics, 82–90, June 12 (1967).Google Scholar
  230. 230.
    J. W. Peters, Low Temperature Photo-Cvd Oxide Processing for Semiconductor Device Applications, Proceedings of the International Electron Devices Meeting, pp. 240–243, Washington, D.C. (1981).Google Scholar
  231. 231.
    L. G. Meiners, Indirect plasma deposition of silicon dioxide, J. Vac. Sci. Technol. 21, 655–658 (1982).ADSGoogle Scholar
  232. 232.
    K. P. Pande and D. Gutierrez, Channel mobility enhancement in Inp metal-insulator-semiconductor field-effect transistors, Appl. Phys. Lett. 46, 416–418 (1985).ADSGoogle Scholar
  233. 233.
    B. Bayraktaroglu, R. L. Johnson, D. W. Langer, and M. G. Mier, Germanium (oxy)nitride based surface passivation technique as applied to Gaas and Inp, The Physics of Mos Insulators (G. Lucovsky, S. T. Pantelides, and F. L. Galeener, eds.), pp. 207–211, Pergamon Press, New York (1980).Google Scholar
  234. 234.
    K. P. Pande and S. Pourdavour, Sr., Ge3N4-Inp Mis structures, IEEE Trans. Electron. Devices Lett. EDL-2, 182–184 (1982).Google Scholar
  235. 235.
    M. Yamaguchi, Thermal nitridation of Inp, Japan. J. Appl. Phys. 19, L401–L404 (1980).ADSGoogle Scholar
  236. 236.
    Y. Hirota, M. Okamura, and T. Kobayashi, The effects of annealing metal-insulator-semiconductor diodes employing a thermal nitride-Inp interface, J. Appl. Phys. 53, 536–540 (1980).ADSGoogle Scholar
  237. 237.
    K. Ploog, A. Fischer, and R. Trommer, MBE-grown insulating oxide films on Gaas, J. Vac. Sci. Technol. 16, 290–294 (1979).ADSGoogle Scholar
  238. 238.
    K. Tsubaki, S. Ando, K. Oe, and K. Sugiyama, Surface damage in Inp induced during Sio2 deposition by RF sputtering, Japan. J Appl. Phys. 18, 1191–1192 (1979).ADSGoogle Scholar
  239. 239.
    D. T. Clark and T. Fok, Surface modification of Inp by plasma techniques using hydrogen and oxygen, Thin Solid Films 78, 271–278 (1981).ADSGoogle Scholar
  240. 240.
    D. Fritzsche, E. Kuphal, and G. Weimann, Inp/Sio2 Inversion n-Channel Misfets: Device Performance Related to Interface Properties, Presented at the Sixth European Specialist Workshop on Active Microwave Semiconductor Devices, Darmstadt (1980).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Derek L. Lile
    • 1
  1. 1.Department of Electrical EngineeringColorado State UniversityFort CollinsUSA

Personalised recommendations